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Quantitative Geographical Analysis

Logistic Regression

Background paper for April 9, 2001 seminar discussion.
Elvin Wyly

1. Overview.

Multiple regression techniques are the mainstay of a broad swath of the multivariate
quantitative literature. Yet they suffer from many limitations; recall, for example, the seven key
assumptions of the general linear model outlined last week. In practice, one or more of these
assumptions will not be met in most real-world applications; nevertheless, researchers often
press on, reporting regression coefficient estimates that are biased or unreliable. At a minimum,
it is essential to test for these assumptions and to report the likely effects on the results and
interpretations for your particular study.

Other limitations of the regression model cannot be ignored. Ordinary least squares
regression is appropriate only when the dependent variable is measured on a continuous,
interval-ratio scale. For problems in which the dependent variable is an outcome, other methods
are required. Regression models in which the dependent variable is measured on a nominal scale
are referred to as categorical models; among the most common are various types of logistic
regression techniques. Logistic regression models can be conceptualized as probabilistic rather
than deterministic: the goal is to determine how one or more independent variables affect the
probability or likelihood of a particular outcome.

In this background paper, we first consider a bit of the history of some of the
mathematical concepts that eventually found their way into probability modeling. We then
examine some of the techniques involved in calibrating a logistic regression equation. The final
section presents a sample code file for logistic regression in SAS.

2. A Short History of e.
The logistic regression framework is normally represented by something like this:

[ Probavitity [
In = + B1X1+ BoXo+... BoXn + i
H — Probability E ot Xt BXat... B

We are trying to predict the odds of a certain outcome (i.e., the ratio of the probability of
a certain outcome to the difference between one and this probability) as a function of a set of
independent variables, X;, X,...X,, along with a constant term (B,) and a unique residual r for
each observation i.'

' In most of the notation we’ ve used up to this point, the error term has been symbolized by e. We use r here to
denote the residual in order to minimize confusion between e (error) and e(the universal constant, the base of the
natural logs).
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This looks similar to the multiple linear regression framework, except for the fact that the
dependent variable is the natural log of the odds ratio.

But where do ‘natural logs' come from, and what makes them ‘ natural’ ?

The answer is more interesting than you might think. Among the many concepts that
figure prominently in the history of mathematics, e, the base of the natural logs, occupies a
curious and privileged position, at the intersection of several important debates and simultaneous
discoveries. Much of what followsistaken from Eli Maor’s lively and accessible history of €;
which | highly recommend as an addition to the mathematics section of your [voluminous]
personal collection of recreational reading.”

The number now known as e originated from several independent sourcesin the early
years of the seventeenth century. Thefirst origin was an eminently practical consideration with
enormous historical and geographical repercussions. At the time, the European transition from
localized, feudal economic relations to a more integrated mercantile regime involved intense
competition among rival powers. The Portugese had dominated Atlantic trade and exploration
since the Treaty of Tordesillas (1494) reconciled competing claims of Portugal and Spain in the
Americas, but by the end of the 1500s the Dutch had become serious players. The Dutch East
India Company was founded in 1602 by the government of the United Provinces of the
Netherlands, in part as an explicit response to the English East India Company. Dutch
hegemony lasted until a series of wars between the 1650s and the 1670s that favored England.
These broad outlinesin ‘world leadership cycles’ comprise only the simplest features of an
extraordinarily complex terrain of struggle among governments and varied interests among
shippers, investors, and merchants.

This intense competition in the race to dominate trade might remind us that
‘globalization’ is simply the latest word for geographical processes that have deep historical
roots.®> The struggle was also, not surprisingly, bound up with all sorts of innovationsin
cartography, navigation, transportation, storage, and finance. Sometime in the early seventeenth
century, someone stumbled upon a few fascinating properties of interest calculations.

Consider the case where we save (or lend) an amount, say P, at an agreed annual interest
rater (say, 0.08 for arate of 8 percent). If the interest is compounded annually, after the first
year the account has grown to P(1+r); after the second year, we have P(1+r)(1+r), or P(1+r)% In
more general terms, the relation can be expressed as

A=P(L+r)"

2Maor, Eli. (1994). e: The Story of a Number. Princeton: Princeton University Press.

3 Conversely, one might read the comparatively insular postwar history of United States economic relations as a
deviation from amore historically persistent pattern: that is, the “golden age” of American capitalism was not the
norm to which subsequent bouts of restructuring are to be compared.
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Where A isthe amount after compounding, P isthe principal invested (or loaned), r is the annual
rate of interest, and t is the number of years. If the lender or bank compounds the interest more
than once a year, however, then we need to make two changes in the equation:

A=P(1+r/n)"
Where n isthe number of times per year the interest is compounded. If n=1, of course, then the
two equations above yield identical results. But consider the effect of more frequent

compounding:

Investing $100 at an annual interest rate of 8 percent:

Compounding n rin A

Annually 1 .08 $108.00
Semiannually 2 04 $108.16
Quarterly 4 .02 $108.24
Monthly 12 00666667  $108.29
Weekly 52 00153846  $108.32
Dally 365 .00021918  $108.33

It is worth noting that daily compounding yields just 33 cents more than annual compounding.*

Sooner or later, it was inevitable that some mischievious prankster would try to find out what
would happen if r=1, that is, if the annual interest rate could be boosted to aloan-shark-league
100 percent. Inthat case, consider what happens if we just put in $1 for one year. Then the
eguation becomes

A=(1+1/n)"
If we ssimply vary n, the frequency of compounding during our one-year |oan period, we get:

(1+1/n)"
2
2.25
2.37037
244141
248832
0 250374
0 2.69159

QRO WNES

* There are two ways in which more frequent compounding yields significant returns to the lender or investor. The
first is through simple multiplication -- i.e., as P grows very large, even tiny differences in the 1+r/n term can result
in sizeable sums. The second is through mechanisms that add to P midstream through the compounding period.
This is the magic that allows credit card companies to boost interest charges by crafting ever more innovative
charges for late payments, cash advances, and other transactions. Some credit card companies have taken to
charging fees to those customers who pay off their balances every month.
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100 2.70481
1,000 2.71692
10,000 2.71815

100,000 2.71827
1,000,000 2.71828
10,000,000 2.71828

No matter how many times the interest is compounded, the amount does not seem to
increase by very much. But it never stops increasing, because the second term of the equation
always adds another fraction, no matter how small. Infact, this number isirrational, meaning
that the decimals are non-repeating, and they never stop. In turn, if the decimals never stop, it
means that it is not possibleto ‘solve’ the equation for A.

Now, we can recognize the problem as asimple case of a“limit.” The basic problem had
been around for centuries, of course. Perhaps the earliest illustration came from the philosopher
Zeno of Elea, who in the fourth century B.C. proposed four paradoxes to show the inability of
mathematics to deal with the concept of infinity. One of these was the “runner’ s paradox,”
which presumably showed that motion isimpossible. In order for arunner to proceed from point
A to point B, she must first pass the midpoint of aline segment connecting the origin and the
destination; she must then halve the remaining distance; and so on. Since the original line
segment between A and B can be divided into an infinite number of line segments of non-zero
length, the runner never reaches her destination. And yet she does.

Around the same time that an anonymous observer came up with the puzzling regularity
of the one-hundred percent interest rate, Jonathan Napier published his Description of the
Wonderful Canon of Logarithms (1614). Napier, a Scottish landowner, inventor, and son of Sir
Archibald Napier, had written the contemporary equivalent of atabloid exposé of the Catholic
Church, but had few other academic credentials. But he was atireless inventor, and, like many
scholars and would-be scholars of the time, concerned to find ways of reducing the tedium of
calculations with large numbers. 1n 1544, the German mathematician Michael Stifel formalized
the ssimple relation between the terms of a geometric progression and the corresponding
exponents. |If we take any two numbers of the progression 1, g, of, o°..., then the product of these
two terms is the same as if we had added the respective exponents. So o x o = o°. Similarly,
dividing the numbers is the same as subtracting the exponents, so that g° / g = g. If the exponent
of the second term is larger than that of the first, we have o” / g° = g*°= g*. Negative exponents
had been proposed as early as the fourteenth century, but only became widely used in Newton’s
time. We handle them by defining g™=1/g™. It also turns out that when we try to calculate g"/q"
= g™ when m=n, we obtain g°=1. For example, 2%/2°=4/4=1, or 2°.

This means we can now extend a geometric progression in both ways:

05 9% 9t 9>=1,q, o ...

Consider the powers of 2:
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=
N

16
32
64
128
256
512

0 1,024
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If we want to calculate 8 x 128, that is, 2° x 2" without the tedium, we can simply look up the
value for 2°*’, or 2'°, which is 1,024. What Napier did was to recognize that any number could
be used as a“base”’, and then the relations between the exponents could be used to perform
enormously complicated calculations with out all the tedium. Napier also filled in the gapsin the
entriesin table of thissort. A few yearslater, Henry Briggs, a professor of Geometry at

Gresham College in London, met with Napier and proposed several modifications. Briggs
devised anew set of tables using the base 10.

At around the same time, Isaac Newton (1642-1727) and Gottfried Wilhelm Leibniz (1646-1716)
were working on a set of problems that led to what we now know as calculus. Theinitial
foundations for some of their work came from much earlier, due to the insights of Archimedes of
Syracuse (287-212 B.C.). But one of the key developments of the calculus -- the derivative --
revealed yet another intriguing finding.

Suppose we consider an exponential function of the form y=b*. If we choose abase (b) of 2 and
limit ourselves to integer values of X, we obtain this:

2X
1/8
1/4
1/2
1

2

4

8
16
32
64
128

\lOﬁU‘Ihwl\)l—‘O#l'\)&)X
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8 256
9 512
10 1,024

And if we graph these values, we obtain something like this:

When the derivative of this function was worked out, it looked like this.

(If your elementary calculusis as rusty as mine was, you' l| have to consult a readable refresher.
Maori takes you through the detail s on pages 100-102.)

d_y = derivative = lim &
dx ax-0 AX
&:bHAx _bx
AX

X(hAX _
&— Iim—b (b D
AX -0 AX

AX

Y _ g 2771

dx -0 AX

Take acloselook at the last line. What the equation says s that the derivative of an exponential
function is proportional to the function itself. The natural question, then, isthere any value of b
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that would make the proportionality on the right-hand side of the equation equal to 1? Maori
provides the details in an appendix, but the result is:

. be _1
=lim
ax-0  AX
b = lim(1+ Ax)Y*
AX -0

1

If we replace the term 1/Ax with m, we get:

b=lim@d+1/m)"

m-— oo

Note that this brings us back to the original puzzle of the dollar invested at a generous
return of 100 percent per annum, compounded continuously (and infinite number of times). The
equation above is the same as A=(1+1/n)" with n approaching infinity. Thelimitis2.71828...

Thisise, the universal constant. It isnot known precisely why it is designated with the
letter e, but it was probably due to the work of Leonhard Euler (1707-1783), who likely was
referring to the exponential functions. In any event, the finding is remarkable: if the number eis
chosen as abase for the exponential function, then the function is equal to its own derivative.

This finding has wide-ranging implications for phenomena in which the rate of change
(the derivative) depends upon the initial state of a system. Examplesinclude radioactive decay
(ranging from billions of years for certain isotopes of uranium to rare forms of radium that last
only afew milliseconds before decaying to other, more stable elements); the lessening intensity
of sound waves as distance increases,; and the growth of certain types of populations.

It is also worth noting that if money is compounded continuously, the balance after t
yearsis A=P¢".

3. A Simple Illustration of Logistic Regression.5

Suppose you own a few acres on a nice little stream on the Delmarva peninsula.’
Suppose you have more money than I do. It's a nice little place, right on the Chesapeake Bay,
but every now and then a tropical storm makes its way up the Eastern Seaboard, and a large
swath of your property is inundated for a day or two. You're interested in putting in a few
improvements on your property, and you'd like to have a sense of where you're most likely to
have a problem with recurrent flooding. So you turn to the flood insurance maps distributed by
FEMA, the Federal Emergency Management Agency. They delineate the boundaries of “100-

> The general approach adopted in this illustration is borrowed and adapted from Subhash Sharma (1996). Applied
Multivariate Techniques. New York: John Wiley and Sons. See Chapter 10, particularly pages 317-321.
® Delaware, Maryland, and Virginia.



Wyly / Quantitative Geographical Analysis / Background on Logistic Regression / April 9, 2001, 8

year” flood plains, which means the area which, on average, they expect to be completely
inundated only once every 100 years. The concept is a slippery one, and landowners are often
chagrined to experience two or three “100-year” floods in a twenty-year period; so it's a
probability, not a certainty.

In any event, many of these maps are quite old, and they’re drawn at a very small scale,
so that it's hard to see the precise boundaries. So you’d like to assess the accuracy of this map,
based on the floods you' ve seen in the backyard in the past few years. You set up a sampling
lattice, and for each point you code two variables: a) whether the point flooded at least once in
the last five years (0=no, 1=yes), and b) whether the point lies in the floodplain defined on the
old, questionable map (0=no, 1=yes). Suppose you have two dozen sampling points:

<
>
)—U

Sample point FLOOD
1 1

©CoOo~NOOA~AWN

,_.
N

CO0O00O00000O0O0OORRRERRERRERRERRERER

OO0 0O000O0O0OOOROORRRRERREREREREER

We can summarize the information in this list in another way, using a contingency table:

Located in map floodplain?

Flooded at least once in last five years? Yes No  Total
Yes 10 2 12
No 1 11 12
Total 11 13 24

This table, by itself, boosts your confidence in the old map sitting on your dining-room table, as
you glance out at the Bay. For only three sample points (the ones off the diagonal of the two-by-
two matrix) does the flood map provide erroneous predictions of flood events, at least as
measured over the last five years. But is there any way to quantify your confidence in these
findings?
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Probabilities and Odds
1. The probability that any sample point was flooded in the last five years is:
P(FLOOD) = 12/24 = 0.50

2. The probability that any sample point was flooded given that it is located in the mapped
floodplain (Y, for “mapped”):

P(FLOODIY) = 10/11 = 0.909

3. The probability that any sample point was flooded given that it is not located in the mapped
floodplain (N, for “Not mapped”):

P(FLOOD|N)=2/13=0.154

Another way of expressing these relationships is with odds. Odds present the same information
as probabilities, but in a slightly different way.

1. The odds of any sample point being flooded are
odds(FLOOD) = 12/12 =1
which is another way of saying that the odds are even, that is, 1 to 1.
2. Odds of a point getting flooded given that it is mapped in the floodplain are
odds(FLOOD|Y)=10/1 = 10

meaning that the odds are ten to one. The odds of a mapped sample point being flooded
are ten times larger than its chance of not being flooded.

3. Odds of a point getting flooded given that it lies outside the mapped area:
odds (FLOOD|N)=2/11=0.182

It is also a fairly simple matter to convert odds to probabilities, and back again. Probabilities and
odds are just two complementary ways of expressing the same thing:
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odds(FLOODJY)
1+ odds(FLOODJY)
10

P(FLOOD]Y) = —— = 0.909
1+10

P(FLOOD]Y) =

P(FLOODYY)
1- P(FLOODJY)

0.909 _
1-0.909

odds(FLOODJY) =

odds(FLOODJY) =

At this point it would be convenient to develop an equation relating the odds of flooding
to apredictor variable, such as whether the point is located in the mapped floodplain. The
simplest approach would be to use the multiple regression framework we discussed last week.
Unfortunately, this approach suffers from three fatal flaws when the dependent variableis
discrete. First, predicted probability values from an ordinary least squares solution are not
bounded, and commonly fall outside the range (0 to 1) that has any meaning. Second, OLS
solutions are heteroscedastic (meaning that error variance is not constant for al values of the
independent variables), creating problems for the standard statistical tests for the slope
coefficients. Third, fitting an OLS model presumes linearity. This problem is not serious when
the independent variables are binary (0/1 dichotomies), but comesinto play when continuous
independent variables are measured. AsWrigley points out in his chapter, most phenomena
conform to a nonlinear, S-shaped curve, such that an increase in the probability from, say, 97
percent to 98 percent is much more difficult to achieve than an increase from 49 to 50 percent
(see Wrigley, pp. 26-27).

Natural logarithms provide one way of achieving this nonlinear, S-shaped curve. Let's
take two of the odds equations that appear above,

odds(FLOOD|Y)=10/1 = 10
odds (FLOOD|N)=2/11=0.182

and then take the natural 1og of both sides of these equations:

In[odds(FLOODIY)] = In (10) = 2.303
In[odds(FL OODIN)] = In(0.182) = -1.704

We can combine these equations. When the areais not mapped (N), we have

In[odds(FLOOD)] = -1.704
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When the areaisin the mapped floodplain, the log of the oddsis equal to 2.303, or (-1.704 +
4.007). So our general equationis:

In[odds(FLOOD|MAP)] = -1.704 + 4.007 * MAP

And since the termsin that equation can also be expressed in terms of aratio of probabilities, we
have

0P O
In = —1 704+ 4.007MAP +r
H-PH

where ther termisjust aunique error term (residual) for each observation in the sample. Notice
the similarity between this specification and the general form of a multiple regression equation.
Although the relationship between predictor variables and the probability of a certain outcomeis
not linear, the relationship between the log of the odds and these predictorsislinear. The log of
the odds is often called a“logit,” and so this equation is referred to aslogistic regression. The
logistic regression equation is the same as a multiple linear regression, just with the log of the
odds serving as the dependent variable. The general form of the logistic specification is:

[ Probavitity [
In = + B1 X1+ B2 Xo+... BoXn + i
H — Probability E ot Xt BXat... B

Estimating the parameters for this equation is considerably more complicated than for the
case of ordinary least squares multiple linear regression. But once the estimates are obtained,
we can calculate alogit (the term on the left-hand side of the equation), and use another equation
to calculate the probability value:

_ 1
T 1+ g BorBXyt. BXn)

In some textbooks, the probability value is shown as

e(ﬁo +B1 X +...nXn)

T 1+ pBotBXa+BXn)

Both of these equations give the same result.

But how do we find the parameter estimates for the logistic regression equation?
Wrigley’s chapter outlines two solutions. Weighted least squares, which is amodified version of
the least squares approach we' ve seen before, is suited for situations in which both the
independent and dependent variables are categorical. But when one or more of the independent
variablesis continuous (measured on an interval or ratio scale), maximum likelihood estimation
must be used.
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It is not necessary for you to understand the details of maximum likelihood estimation as
laid out in Wrigley’ stext. Very few social scientists understand the procedure on the same level
asWrigley. The genera idea, however, isimportant. Aswe saw in the background paper for
King's ecological solution to the ecological inference problem, maximum likelihood refersto a
family of methods where equations are solved by finding the combination of values that were
most likely to have resulted in the observed patternsin asample. The simple example we used
last time was a coin toss, which yielded avery simple function; finding the maximum of this
curve, either by calculus or trial-and-error, gives us the “maximum likelihood” solution. Every
hypothesized relation -- an initial equation in which you specify a certain outcome as afunction
of acertain set of independent variables -- has a unique likelihood function, which expresses the
likelihood of obtaining the observed pattern of outcomes with different combinations of
parameters. Thetask, therefore, isto find the parameters of this function at its maximum.
Calculus can be used for simple functions, but for more complicated specifications an iterative
search procedure is used.

To illustrate how we assess model fit and the reliability of the parameter estimates, let’'s
venture out of your luxurous Delmarvaretreat and consider a more serious set of problems.

4. A More Serious Example.’

Let’ s abandon the disciplinary boundaries for amoment, and borrow a dataset from the
medical field. From a study on the survival of patients following admission to an adult intensive
care unit (ICU), we have information on a sample of 200 patients. The study used logistic
regression to predict the likelihood of survival until discharge from the hospital. A tota of
nineteen predictor variables were observed, but not all of them were used on the survival model.
The dependent variable is STA, which is coded 0 for those who survived until discharge, and 1
for those who died in the hospital . Forty of the 200 patients died. Our goal isto find the
observed characteristics of patients upon admissionsto the ICU that serve as the best predictors
of whether they will survive their hospital stay. We know that asking this question raises all
sorts of thorny issuesin terms of the ultimate use of the information once it is obtained (patient
insurance, doctor and hospital mal practice insurance, pre-screening, etc.); but it is clear that the
results are not likely to be ignored as uninteresting, trivial statistical blather.

The SAS code file that reads in the data and requests alogistic regression is on the next
page, followed by abit of interpretation.

"The dataset included in this example is taken from the Data and Story Library, developed by the Department of
Statistics at Carnegie Mellon University. See [http://lib.stat.cmu.edu/DASL/Datafiles/ICU.html].

¥ The default setting in SAS yields regression models that predict the likelihood of observing a 0 compared to a 1;
this option can be changed either by specifying a different option in the software, or coding a “reverse dummy
variable” in the data step.
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LOGIT.SAS
Logistic Regression of I ntensive Care Unit Data

I'i bnane qga "c:\sasproj\qgga";

data qga.icu;

input 1D STA AGE SEX RAC SER CAN CRN I NF CPR SYS HRA PRE TYP FRA PO2 PH PCO BI C CRE LCC;
| abel ID="patient id";

| abel STA="vital status (0=lived, 1=died)";

| abel AGE="Patient age in years";

| abel SEX="Patient sex (0=Male, 1=Femal e)";

| abel RAC="Patient race (1=Wite, 2=Bl ack, 3=t her)";

| abel SER="Serv at | CU adm (0 = Medical, 1=Surgical)";
| abel CAN="Cancer part of prsnt prob?(0=No, 1=Yes)";

| abel CRN="Hi st chronic renal failure(0=No, 1=Yes)";

| abel I NF="Infection prob at | CU adm (0=No, 1=Yes)";

| abel CPR="CPR prior to ICU adm (0 = No, 1=Yes)";

| abel SYS="Systol blood press at 1 CU adm (in nm Hg)";
| abel HRA="Heart rate at I CU adm (beats/mn)";

| abel PRE="Prev admto ICUWi 6 nmb (0=No, 1=Yes)";

| abel TYP="Type of adm (0=El ecti ve, 1=Energency)";

| abel FRA="Serious fracture (0 = No, 1=Yes)";

| abel PO2="PQ2/initial blood (0 = >60, 1=60)";

| abel PH="PHinitial blood (0 = 7.25,1<7.25)";

| abel PCO="PCQ2/initial blood (0 = 45,1=>45)";

| abel BI C="Bicarbonate/initial blood (0=18, 1=<18)";

| abel CRE="Creatinine/initial blood (0=2.0,1=>2.0)";

| abel LOC="consc at adm (0=consc, 1=stupor, 2=coma)";

cards;
8027211112114288121111111

12059111111111280221111111
14077112111110070111111111
280541111121142103122111111
32087 2121121110154 221111111
380691111121110132121211211
40063 1121111104661 11111111
41 0302111111144 110121111111
42 035121111110860121111111
500702122111138103111111111
51 055212112118886211111111
53 0481222111162 100111111111
58 066212111116080211111111
61061211121117499121121221
73066111111120690121111121
75052112112115071211111111
82 0551121121140116111111111
84 05911111214839121212213

92 0631111111132128221111111
96 072112111112080211111111
980601111122114110121111111
100078112111118075111111111
102 0162111111104 1111 21111111
111 0621121211200120111111111
112061 11111211101201 21111111
136 035111111115098121111111
137 074212111117092111112111
143 0681121111158 9% 111111111
153 069212111113260121111111
170051 111111111099 121111111
173 055112111112892111111111
180 0642321121158 90221111111
184 088 212112114088 221111111
186 0 23212111111264122111111
187 0732122111134 60111112111
190 053132111111070211111111
191 074112111117486111111111
207 068112111114289111111111
211 066 2111121170952 21111111
214060112212111092111111111
219 0641121121160120111111111
225066 1222121150120111112111
237 0192121121142 106122111111
247 0182111111146 112121111111
249 063112112116284221111111
2600451111111126110121111111
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266 0641111111162 114121111111
271 068 2111121200170221111111
276 064 21 111211261221 21212111
277 082112111113 70111111111
278 073 112111117088 111111111
282 070111111186 153221112111
292 061112112168124121111111
295064112212111688 111111111
297 047 112212112083 111111111
298 0691121111170100111111111
308 0672111121190 125121111111
3100181 12211115699111111111
39 0771121121158 107111111111
327 032122111112084121111111
333 0192121121104 1212 211111111
33072212111113086121111111
343 0491111121112 112121111111
357 0682121111154 74111111111
362 082112122113 131121111111
365 0322311122110118121111111
369 0 7821211211269 121111111
370 0571111121128104121112111
371 046 21 2211113290121111111
376 023 1111121144881 21111111
378 0551111111132 112121111111
379 0181 121111112761 22111111
381 0201121111164 108121111111
382 075212111110048111111111
308 079112112111267111111111
401 040112111114065122111111
409 076112112111070121111111
413 066 21 2112113992111111111
416 0 76 1111121190 100121111111
438 080 2121111162441 21111111
439 023 2111121120881 21111111
440 0481 22112192162221111111
455 0671 221111992211111111
462 06921 2111115085121111111
495 0651321111208 124111111111
498 0 72 112111112688 111111111
502 0551111111190136121222111
505 040111111113065121111111
508 055211112111086121111111
517 034112111111080122111111
522 047 2121111132681 21111111
52560412 1111211181451 21121211
526 084 2111221100103121111221
546 088 2121111110462 11111111
548 0 77 212211121287 111112111
550 0801111111122126121211211
552 0161121111100140122111111
560 0701 121111160601 11111111
563 0832121121138 91121111111
573 023121111113052121111111
575067 2111112120120121122111
584 018112211113 140111111111
597 0 77 211112113 138111222111
5908 048 211111212891 21111111
601 024221111114086121111111
6050712111121124106121111111
607 0721121111134 60121111111
619 0772121211170115211111111
6200601 121121124135121111111
639 046 1122111110128111111111
644 0652111111100105121111111
645036 1111111224125121111111
648 068 1121111112641 11111111
655 058111111115498121111111
659 076 2111121921121 21111111
669 0412211111110144121111221
670 020131111112068121111111
674 0911111221152125121111111
675 075112111114090121111111
676 0252111111131 135121111211
709070111112178143121211111
713 0471121111156 112121111111
727 0751321111144 120121111121
7280401 2111211601502 22111111
732 0711111121148 192121222111
746 0 70 211112190 140121211211
749 0581121111148 95221111111



Wyly / Quantitative Geographical Analysis / Background on Logistic Regression / April 9, 2001, 15

754 0541121111138 111111111
7610 77112111112859111111111
763 0551122121138 140111111111
764 021 1121111120621 21111111
765 0531211212170115121111111
766 031 2112222146 100121122111
772 071112211120452111111111
776 0491211111150100121111111
784 060221112111692221111111
794 0501111121156 99121212111
796 0452121111132 109122111111
809 021112111111090121111111
814 073212111113083121111111
816 028112112112280212111111
829 017112111114078122111111
837 017231111113 140121111111
846 021 21 2111114279121111111
847 068 21221119179111111111
863 0171321111136 78121111111
867 0601111121108120121111111
875069112111116973121111111
877 088211121119088121111111
880 020112111112080121111111
881 089212111119 114121112113
889 062211111111078121111111
893 046 1111221142891 21121211
906 0191121121100137121111111
912 0711111121124 124121222111
915067 112111115278111111111
923 020112111110483121111111
924 073 2211211162100121111111
925 059111111110088121111111
929 042112111112284122111111
4187212112189 122222111
27176 212112112890221111111
47 1781111121130 132121111211
521631111221112106221211111
127 119112111114076121111111
145 167211112162145121111121
154 1532111121148 1281 21122111
165192 1111121124801 21111211
1951571111122110124121111113
202175212211113 136111111111
204191111112164125121112111
2081701121111168122111211112
2221881111122141140121111111
238141112112114058121111113
241 161111111114081121111111
27318011211111008121111111
285614011111218680221111111
299175111112190100121111112
3311632121222368 122111123
346 1 752 11211119094121111111
3801 201121111148 72122111111
384 1711111111142 95121111111
412 151212112113 100221111112
427 16511111116694121111113
442 169231121117060221211111
461 1551121221122100221111111
468 1 5021221111209 121111111
490178111112111081121111111
518171 211111270112121111113
611 1821211111369 121111111
613 175111122113 119121121221
666 1 652 1111221041501 21112113
6711491111122140108121111211
7061 75211122215066121111123
7401 72 2111111901601 21111111
75116911112118081121111113
752164111212180118121211121
789160111112156114221121211
871160132122113055121111112
150221111125664121111112

921
Yrun;

proc | ogistic data=qga.icu;
nodel sta=age sex;
title "nodel 1 baseline";
run;

proc | ogistic data=qga.icu;
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nodel sta=age sex can hra typ fra loc cpr inf ser;
title "nodel 2: add nedical variabl es";
run;
proc | ogistic data=qga.icu;
nodel sta=age sex can hra typ fra loc cpr inf ser pre;
title "nodel 3: add prev icu";
run;
Logistic Regression of I ntensive Care Unit Data
model 1 baseline 10: 42 Monday, April 9, 2001 5
The LOG STI C Procedure
Data Set: QGA ICU
Response Vari abl e: STA vital status (0=lived, 1=died)
Response Levels: 2
Nurmber of Cbservations: 200
Li nk Function: Logit
Response Profile
Ordered
Val ue STA Count
1 0 160
2 1 40
Model Fitting Information and Testing G obal Null Hypothesis BETA=0
I ntercept
I nt ercept and
Criterion Only Covari at es Chi - Square for Covari ates
Al C 202. 161 198. 305
SC 205. 459 208. 200 .
-2 LOG L 200. 161 192. 305 7.856 with 2 DF (p=0.0197)
7.180 with 2 DF (p=0.0276)
Anal ysi s of Maxi mum Li kel i hood Esti mates
Par anet er St andar d val d Pr > St andar di zed Qdds
Estinate Error Chi - Squar e Chi - Squar e Estinat e Rati o
3. 0454 0.8190 13. 8254 0. 0002 . .
-0.0276 0. 0107 6. 7005 0. 0096 -0. 304989 0.973
0.0113 0.3718 0. 0009 0. 9757 0. 003034 1.011

Associ ation of Predicted Probabilities and Observed Responses

Concordant = 62.4% Sonmers' D = 0.259
Di scordant = 36.5% Ganmmra = 0.262
Ti ed = 1.0% Tau-a = 0.083
(6400 pairs) c = 0.630
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nmodel 2: add nedical variabl es 6
10: 42 Monday, April 9, 2001

The LOG STI C Procedure

Data Set: QGA ICU

Response Vari abl e: STA vital status (0=lived, 1=died)
Response Levels: 2

Nurmber of Cbservations: 200

Li nk Function: Logit

Response Profile

O dered
Val ue STA Count
1 0 160
2 1 40

Model Fitting Information and Testing G obal Null Hypothesis BETA=0

I ntercept
I nt ercept and
Criterion Only Covari at es Chi - Square for Covari ates
Al C 202. 161 164. 197
SC 205. 459 200. 479 .
-2 LOG L 200. 161 142. 197 57.964 with 10 DF (p=0.0001)
Scor e . . 58.505 with 10 DF (p=0.0001)

Anal ysi s of Maxi mum Li kel i hood Esti mates

Par anet er St andar d wal d Pr > St andar di zed Qdds
Vari abl e DF Estinate Error Chi - Squar e Chi - Squar e Estinate Rati o
I NTERCPT 1 13. 7570 3.4112 16. 2636 0. 0001 . .
AGE 1 -0.0392 0.0138 8.0913 0. 0044 -0. 432895 0. 962
SEX 1 0. 4884 0. 4603 1.1261 0. 2886 0. 131036 1.630
CAN 1 -2.1649 0.8711 6.1769 0.0129 -0. 358970 0. 115
HRA 1 0. 00379 0. 00907 0.1748 0. 6758 0. 056073 1.004
TYP 1 -2.7604 0. 9852 7.8506 0. 0051 -0.673342 0. 063
FRA 1 -0.7634 0.9093 0. 7049 0. 4012 -0.111140 0. 466
LoC 1 -1.8571 0.5778 10. 3300 0.0013 -0. 469682 0. 156
CPR 1 -0.4316 0. 8516 0. 2569 0.6123 -0.058812 0. 649
I NF 1 -0.3837 0. 4656 0.6790 0. 4099 -0.104671 0. 681
SER 1 0. 3022 0. 5200 0. 3376 0. 5612 0. 083303 1.353

nodel 2: add nedical variables 7

10: 42 Monday, April 9, 2001
The LOG STI C Procedure

Associ ation of Predicted Probabilities and Observed Responses

Concordant = 84.7% Sonmers' D = 0.698
Di scordant = 14.9% Ganmma = 0.701
Ti ed = 0.4% Tau- a = 0.225
(6400 pairs) c = 0.849



Vari abl e

| NTERCPT
AGE
SEX
CAN
HRA
TYP
FRA
LCC
CPR
I NF
SER
PRE
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nodel 3: add prev icu 10: 42 Monday, April 9, 2001
The LOG STI C Procedure

Data Set: QGA ICU

Response Vari abl e: STA vital status (0=lived, 1=died)
Response Levels: 2

Nurmber of Cbservations: 200

Li nk Function: Logit

Response Profile

O der ed
Val ue STA Count
1 0 160
2 1 40

Model Fitting Information and Testing G obal Null Hypothesis BETA=0

I ntercept
I nt ercept and

Criterion Only Covari at es Chi - Square for Covari ates

Al C 202. 161 163. 805

SC 205. 459 203. 385 .

-2 LOG L 200. 161 139. 805 60.356 with 11 DF (p=0.0001)

Scor e . . 60.356 with 11 DF (p=0.0001)

Anal ysi s of Maxi mum Li kel i hood Esti mates
Par anet er St andar d val d Pr > St andar di zed Qdds
DF Estinate Error Chi - Squar e Chi - Squar e Estinate Rati o
1 15. 1049 3.5621 17.9819 0. 0001 . .
1 -0.0418 0. 0145 8. 3256 0. 0039 -0. 462539 0. 959
1 0.5910 0.4732 1.5596 0.2117 0. 158546 1.806
1 -2.4174 0.8982 7.2440 0.0071 -0. 400845 0. 089
1 0. 00497 0. 00900 0.3047 0. 5809 0. 073529 1. 005
1 -2.7804 0.9827 8. 0055 0. 0047 -0.678216 0. 062
1 -0.9107 0.9191 0.9819 0.3217 -0.132583 0. 402
1 -1.9129 0.5773 10. 9799 0. 0009 -0. 483776 0. 148
1 -0.6132 0. 8685 0. 4985 0. 4802 -0. 083552 0. 542
1 -0.2495 0.4741 0.2769 0. 5987 -0. 068069 0.779
1 0. 4067 0.5244 0. 6015 0. 4380 0.112110 1.502
1 -0.8991 0.5679 2.5061 0.1134 -0.177440 0. 407
nodel 3: add prev icu 10: 42 Monday, April 9, 2001

The LOG STI C Procedure

Associ ation of Predicted Probabilities and Observed Responses

Concordant = 85.9% Sonmers' D = 0.720
Di scordant = 13.9% Ganmma = 0.722
Ti ed = 0.2% Tau- a = 0.232
(6400 pairs) c = 0. 860

8



