Geographies of the United States in the Year 2002

Elvin K. Wyly
Assistant Professor
Department of Geography and Center for Urban Policy Research
Rutgers University

wyly@rci.rutgers.edu

May, 2002

1 I am deeply grateful to Brian Berry for the opportunity to engage with his work, and to Daniel Sui for organizing this valuable forum. I also wish to thank John Adams, Cheryl Gowar, Dan Hammel, and Robin Leichenko for valuable comments and feedback that helped shape my perspectives on the shifting intellectual-geographical currents described in this essay. I am to blame for all deficiencies and omissions.
“The change was based in science.... There was a continuing interplay between speculation and empirical investigation.... The research was broadly based and multidisciplinary.... There was a continuing concern to keep one foot in theory and the other in practice.... These are qualities that I still value, despite the ascendency of armchair socialism in the 1980s and its replacement by a combination of environmental activism and dreamtime postmodernism in the 1990s as the reds became green and the dialecticians switched from Marx to Foucault.”

(Berry, 2001: 561).

“To comment upon the sacred is never easy, and the charge of sacrilege is always imminent. ...the tendency and temptation to look politely the other way is strong. But Reflections always require a mirror, and to ignore the mirror is the equivalent of clapping with one hand to produce wind but no sound.”

In the 1960s, the scholarship of Brian J.L. Berry set him on a path to become geography’s “master weaver,” and he remained one of the field’s most heavily cited authorities well into the 1980s (Bodman, 1987, 1991; cf. Berry, 2000b). “The Geography of the United States in the Year 2000” (Berry, 1970, hereafter “the Geography”) was penned at a time when Berry was the single most frequently cited geographer (Whitehand, 1985). The article presented a valuable synthesis of the processes creating twentieth-century regional economic and urban geographies, and sketched a prescient mental map of today’s American landscapes. The Geography is a classic in human geography, in every sense of the word. But authors are not always the best ambassadors for their own work, and the promise of the quantitative revolution will be thwarted if revolutionaries misunderstand the dialectical processes they set in motion. A small but intellectually dynamic group of scholars today are working hard towards the conditions of possibility seen by Berry in the Geography, but this new generation is too often ignored amidst the ongoing wave of Reflections on the Nature of quantitative revolution geography (e.g., Adams, 2001; Berry, 1993a, 2001b; Clark, 2001; cf. Harris, 1997, for a valuable exception). As a junior scholar steeped in the traditions of
genuflection to the classics, I can offer only three contributions in this essay: a brief empirical engagement with Berry’s predictions, an explanation of the shifts that now make it impossible to do the kind of geography illustrated in the Geography, and a celebration of the alternatives. The quantitative revolution continues, but the bitterness nurtured by some of its vanguards is not helpful for contemporary socio-spatial analysts.

Berry’s Contribution

The Geography offered a panoramic view of mid-century patterns and processes in the nation’s economic and spatial structure. Berry fused retrospective views of prior predictions (H.G. Wells) with a synthesis of his ongoing research agenda on daily urban systems, Borchert-inspired theories of metropolitan evolution, and migratory streams arising from regional economic and demographic transformations. Then he turned to contemporary debates over future geographies of postindustrial metropolitan development, describing a nation anchored by the gargantuan megalopoli of Boswash, Chipitts, and Sansan. Berry saw the prevailing view as an overly conservative underestimate of the rate of change, however, and drew on his “cities as systems within systems of cities” framework to anticipate a radically new spatial structure as telecommunications technologies accelerate time-space compression and alter the raison d’etre of regional economies. It is at this point where a reader in 2002 is taken on a fascinating tour of Toffleresque anticipations: “We are on the verge of yet another fundamental transformation of American society,” (43) or “Television, I think, is the first of a series of revolutionary electronic innovations that will affect America in the years to come,” (46) and “The revolutionary aspect of electronic environments is not that they reduce the frictions in moving goods and people, but that they move the experience itself to the human nervous system” (49). Berry clearly saw the error of what Galbraith (1958) called the conventional wisdom, of becoming “wedded to comfortable ideas and retaining them long after they have ceased to be relevant” (Berry, 1970: 50). He sought new ideas to chart the emergence of a new geography, and found them in the metaphors of inversion and telemobility. Berry predicted the inversion of prevailing mid-century spatial divisions – center/edge, core/periphery, snowbelt/sunbelt – and the emergence of an intricate, dispersed society of telemobility, no longer constrained by the mechanical geographical concepts of distance-decay, gravity models, and heartland-hinterland.
Three decades have been kind to many of these predictions. “Growth impulses and economic advancement...‘trickle down’ to smaller places and ultimately infuse dynamism into even the most tradition-bound peripheries,” (Berry, 1970: 44), and “successive sets of ‘natural resources that count’” (32) have taken us from primary/secondary/tertiary sectoral classifications to quaternary and beyond, to flex-spec production complexes, to the production of amenity consumption. “Persons of greater wealth and leisure ... find homes and work among the more remote environment of hills, water, and forest, while most ... aspire to this as an ideal” (Berry, 1970: 47). The results are evident in not-so-subtle changes in the half-century long population flow from rustbelt to sunbelt. The mean center of population for the lower forty-eight marched across the Mississippi sometime around 1977, and is steadily making its way through southern Missouri (U.S. Bureau of the Census, 2002: 20). By the closing decade of the century, the fastest-growing states (Nevada, Arizona, Colorado, Utah, and Idaho) seemed finally to be unleashed from the dictates of thousands of years of coastal- or river-based settlement. The old regional economies (or at least what passes for old in the U.S.) continue to lose ground in relative if not absolute terms. At the heart of these changing regions, industrial cities have continued to hemorrhage population, much as Berry expected; of the nation’s cities with mid-century populations over 200,000, thirty-six lost population in two or more decades between 1950 and 2000, with particularly severe losses in the 1970s (Simmons and Lang, 2001). The transformation of the postwar urban system is highly uneven, however, and the combined effects of uneven regional development and renewed immigration have revived many older centers; the 1990s brought substantial population increases in New York (686,000 or 9.4 percent), Chicago (112,000, 4.0 percent), and even cities like St. Paul (5.5 percent), Boston (2.6 percent), Providence, RI (8.0 percent), and Jersey City, NJ (5.0 percent).

Many facets of Berry’s (1970) prediction of telemobility have also come to fruition, or at a minimum the preconditions have been established for full-fledged adoption and diffusion of the rapidly-changing technologies of teleportation, as well as for the adaptation of social, economic, and political institutions (Berry, 2001a). Much contemporary research confirms the outlines of Berry’s (1970) expectations, but Townsend’s (2001) evidence is particularly striking. Townsend (2001) traces the history of the Defense Department’s Advanced Research Projects Administration network (ARPANET, launched the year after Berry’s article) and other progenitors of today’s
system, and uses several contemporary indicators to map the geography of Internet activity. Townsend (2001: 53) presents a map of Internet domain name density in January, 1999, by zip code for the lower forty-eight states. The pattern is extraordinary, a fascinating marriage of the familiar “U.S. at night” views of the urban network and a contemporary version of Berry’s (1970) maps of color television market penetration - highlighting rural as well as urban counties throughout the western half of the continent. Footloose bits intersect with special intensity in cities that have achieved (or maintained) world-city status since Berry’s (1970) essay, but also focus on “new network cities” such as San Francisco, San Jose, Washington, DC, and other outposts of the new economy; information flows have begun to push other places to the relative margins, creating what Townsend (2001) calls “information blackholes” in Detroit, Philadelphia, Cleveland, and St. Louis.

Other evidence yields a mixed verdict. A long-run decline in the ratio between metropolitan and non-metro poverty rates (from about 1.65 in 1970 to 1.25 in the late 1990s) offers some support for the idea of inversion (or at least convergence). Disparities between central cities and suburbs, however, have remained surprisingly durable (with the ratio fluctuating around 2.0 from the 1970s through the 1990s) (U.S. Bureau of the Census, 2002). The national average conceals enormous variation in the fortunes of people, firms, and places, as flows of investment and disinvestment interact with domestic and international migration streams to remake the urban system. Deindustrialization magnified inequality in the cities of the manufacturing belt during the 1970s and 1980s, but it is also clear that the growth of the South has its style of polarization as well; by one measure of inequality, Atlanta had the most polarized income distribution among the nation’s largest cities (Wyly et al., 1998). The past three decades have created dynamic new points on the map of daily urban systems, while established parts of the network have undergone substantial internal reorganization. Many of the processes driving the geographical expression and constitution of social inequality remain the same, although they are playing out at an expanded spatial scale. Among the “explosive realignments within urban fields surrounding the older metropolises” (Berry, 1970: 41) is an intensified polarization of neighborhood wealth (Wyly, 2001).
Much as Berry (1970: 49) warned against the simple metaphor of “scatteration,” we must pay careful attention to the complexities of once-industrial cities as they find new roles in global and local systems of consumption, production, and exchange. As deindustrialization hollowed out the core of old northern cities in the 1970s and 1980s, a flourishing interdisciplinary literature sought to explain the emergence of a permanent urban “underclass” (usually conceived in behavioral rather than structural terms). At the same time, however, capital reinvestment in the urban core was making new enclaves of wealth cheek-by-jowl with poverty, and ironically the residents of these gentrified neighborhoods are most likely to be wired into the telemobility networks of the global economy. They do have to come home at night, even if they spend their days dancing on “a thin film of electrons spread over the countryside” (Berry, 1970: 50) and the developed capitalist world. Evidence suggests that the total population of gentrified neighborhoods is not much different from that of so-called underclass neighborhoods, and there are reasons to suspect that public policy and changes in capital markets have lubricated the recentralization of investment (Wyly and Hammel, 1999; Smith and Defilippis, 1999; cf. Berry, 1999). And the intense competition of people and capital for a place at the core is not limited to the overheated markets of New York and San Francisco. Using a combination of field research and statistical analysis of loan disclosure records, Daniel Hammel and I are documenting the pace and character of gentrification in twenty-three large U.S. cities. Between 1993 and 2000, inflation-adjusted commitments of prime, conventional home purchase capital grew by 219 percent in intensely-redeveloped core gentrified neighborhoods; adjacent fringe gentry areas saw an increase of 279 percent. The suburban growth rate for the same period was 82 percent. Multivariate models of lending decisions indicate that capital investment and banking industry practices favor home-buyers in gentrifying neighborhoods, while also magnifying the effects of racial and ethnic discrimination (Wyly and Hammel, 1999). In sum, the continued decentralization of the daily urban system should not blind us to the continued significance of capital investment and social polarization at the urban core.

Doing Geography in 2002
I confess to a naive, prurient fascination as I read “past forecasts of future geographies” (Berry, 1970: 22). I cannot resist thinking of the world-cities literature when I see Berry’s urban network in its luxurious isolation from the rest of the world (Friedmann, 1986; Knox and Taylor, 1995;
Sassen, 1994). When I see the Doxiadian daily urban systems traced out on Berry’s maps, I think of the ongoing debates over spatial mismatch, enduring racial segregation and American Apartheid, and spatial relations of gender in local labor markets (Hanson and Pratt, 1995; Kain, 1968, 1992; Massey and Denton, 1993; Wilson, 1997). When I see Berry’s spatial demographic analyses, which in 1970 could still be done without any mention of immigration, I think of our current debates over the utility and dangers of the “demographic balkanization” metaphor (Ellis and Wright, 1998; Frey, 1995). When I compare Berry’s maps of color television market penetration with Townsend’s (2001) maps of Internet activity, I am reminded of Lewis’s (1983) provocative view of the “galactic metropolis,” with a spatially dispersed urban and regional fabric tied together by the gravitational forces of information and communication.

Can we replicate the Geography today? Epistemological consensus is not what it used to be, we are more inclined to question the assumptions (Hanson, 1995), and any attempt to render a single, unitary geography in the style of the 1970 essay raises concerns over the “god trick,” the claim of objectivity as the scientist writes down truths obtained by “vision from everywhere and nowhere” (Haraway, 1991: 191). Even if we were to find an epistemological ground for common search, however, problems remain. The two central transformations Berry anticipated - inversion and telemobility - have turned out to be relatively simplistic metaphors, unsuited to the complexities of social, spatial, and temporal processes. What may have been difficult to anticipate in 1970, and what is painfully apparent today, is that clear-cut dichotomies of core/periphery and physical/virtual environments were never anything more than analytical simplifications of the processes of uneven development and the social production of space, place, and scale (Harvey, 2000; Marston, 2000; Smith, 1984). Today’s American landscape certainly shows evidence of its historical roots as an urban system organized by spatial relations and transport and communications technologies: “images of past geographies peep through, palimpsest-style” (50). But a new space of flows (Castells, 1996) is infused into this geography, forging complex new relations between society and space (Knox, 1993; Soja, 1980, 1996). Berry clearly saw much of this coming, and he also understood that geography’s “conceptual foundations” would shift as intervention in the urban development process became inseparable from supposedly detached, objective analysis and understanding of that process. But far more serious changes were underway.
Three shifts have been most important in shaping the geography of the U.S. we confront in the year 2002, and in creating new conditions of possibility for future geographies.

The first shift is now all too familiar. The uneven geographical developments of globalization (Harvey, 2000) have swept aside many of the economic and spatial arrangements of the middle decades of the twentieth century. Oil-shock recessions and the collapse of the Bretton-Woods exchange-rate regime in the 1970s hammered the final nails into the coffin of the postwar golden age, a period now properly understood as an historical aberration rather than the normal state of affairs (Webber and Rigby, 1996). The comparatively simple spatial organization of the golden age, assuming it was not also an illusion, disappeared as well. Berry wrote the Geography during one of the rare interludes when it was actually possible to describe the geography of the United States by analyzing the place itself. Globalized uneven development has accelerated the production of new scales of political-economic relations (Smith, 1992), and the implications span the range from the broadly theoretical to the day-to-day details of empirical analysis. Euclidian geography fails us now, regardless of which indicator is chosen. Mapping regional demographic patterns is hazardous when divorced from the context of accelerated immigration, seasonal migratory labor circuits, and transnational identities among the jet-set capitalist elite, as well as the downgraded working classes; credit unions in Brooklyn and The Bronx register sudden surges of wire transfers when hurricanes pass through the Caribbean, punctuating the usual rhythm of remittances (DeFilippis, 2000). Mapping SIC or NAICS codes overlooks the spatial, temporal, and cost complexities of commodity chains spread across dozens of production sites, and in any event it is becoming quite difficult to understand where certain goods and services are actually “produced.” Mapping daily urban systems with standard commuting data misses the small cadre of global-city elite, who spend a good portion of their week aloft in a first-class seat hopping between New York and London, or Tokyo and Los Angeles (e.g., Baker, 2001), and the much larger portion of the workforce who spend their days on the road (Fedex and UPS drivers, U.S. Postal Service delivery persons, repair technicians, sales reps, taxi drivers, etc.), working at home (home-based professionals as well as low-wage teleworkers, data-entry clerks, and customer-service representatives), or shuttling among constantly-shifting work sites (temps, consultants, maids and cleaners working in the “domestic outsourcing” industry [Talbot, 1997; England, 1996]).
A second shift has altered the data systems used to measure and monitor the geography of the U.S. This change involves elements of policy and ideology as well as the technical details of databases. Repeated rounds of government devolution, beginning with Nixon’s “New Federalism” in 1969 and picked up again by Reagan and Clinton, meshed with aggressive attempts to privatize a broad array of public sector functions (Staeheli et al., 1997; Waste, 1998). Anyone concerned with the fate of cities must surely feel wistful when reading that “One of the most pressing public debates in the United States today concerns the development of a national urban growth policy” (Berry, 1970: 22). In Washington, DC, this debate waxed and waned through the turbulent 1960s and early 1970s, but ultimately failed despite the Herculean efforts of a handful of scholars and officials in the Carter Administration (Glickman, 1980; Scruggs, 1995). Since 1980, national urban policy has been premised on the enforced axiom that the market decides, and this ideological commitment has gone hand-in-hand with changes in the politics of information.

Bipartisan commitments to deregulation and devolution in successive Congresses and Presidential Administrations led to a localization of regulatory tasks, and community-based organizations were encouraged to use public data systems as a means of “regulation from below” (Fishbein, 1992). At the same time, public data systems themselves began to be privatized through active and passive means. Perhaps none of this is genuinely new; the Census Bureau, after all, has been part of the Department of Commerce for good reason. Yet some things do seem new, casting Berry’s maps and data analyses in a very different light when viewed from the vantage point of 2002. It is significant, I think, that Berry introduced the telemobility metaphor with a quote from a Kaiser Company brochure rather than, say, a passage from Marshal McLuhan. Underneath Berry’s (1970) deceptively clean maps of color television market penetration, behind Townsend’s (2001) maps of Internet activity, is a landscape bloodied by battles over data, privacy, copyright, patents, and trademarks. The maps are structured by local, national, and international wars over intellectual property (Curry, 1996). Even animal and plant life is now up for grabs in property rights claims, giving an entirely new meaning to simple maps such as those showing county-level agricultural landuses. The growth of private information dossiers with credit records and consumption behavior, along with new means of linking public and private sources in enormous relational databases, has spawned a geodemographic marketing industry devoted to the profitable harvesting of prospects from each of Berry’s (1970) daily urban systems (Goss, 1995; Pickles,
1995). Telemobility and similar metaphors offer the illusion of free exchange of information and the annihilation of space by bandwidth. But the geometric advance of data and telecommunications technology simply provides new and (publicly) unregulated arenas for social, political, and institutional relations. There is no consensus on whether the virtual places of telemobility are conducive to more oppressive or emancipatory social relations (for a balanced assessment, see Adams, 1998). We can produce maps similar to those Berry (1970) compiled, therefore, but our analysis and interpretations would involve a far more intricate and uncertain reckoning with the notions of inversion and telemobility. Globalized telemobility means a rich world of information, data analysis, and communications; but it also means a world of dot-commodified irrational exuberance, pump-and-dump daytraders, Long Term Capital Management, Enron, Napster lawsuits, spamming, thousands of computer viruses and the resulting emergence of a sophisticated computer security industry, and difficult legal questions over public and private surveillance, web tracking, and the rights of the “digital individual” (Curry, 1997; Lessig, 2001; Rosen, 2001).

A third change is apparent in the role and conceptualization of space. The social physics heritage of the methods incorporated into 1960s spatial analysis and much of Berry's work is well known, but the space portrayed in the Geography is largely derivative, a byproduct of accelerated economic and technological innovation. Monitoring and intervening in geographical change is now understood in more dialectical terms, as space is used alternately to reinforce or challenge prevailing social and political relations (Harvey, 1973, 2000; Smith, 1992). The central pillars of America’s daily urban systems – the automobile and the detached, single-family home – constantly remake urban space in ways that lubricate capitalist accumulation and shape the genre de vie of workers and families (Hayden, 1984; Walker, 1981; Wyly, 1999). Privatization and devolution of social welfare functions of the state, alongside a simultaneous elevation and centralization of investment decisions, reshape regional spaces in ways that discipline locally-tied workers and institutions (Cox, 1998; Marston, 2000; Wyly and Hammel, 2000). And the local state has stepped in to increase surveillance and spatial disciplinary strategies directed at those left out of the material benefits of corporate globalization (Light and Smith, 1998). Once again, we are certainly able to replicate some of the valuable maps Berry compiled for the Geography, but doing so
confronts us with a more vicious use of space as the state has retreated from most of its responsibilities to cushion the effects of market inequality. Contemporary versions of Berry’s regional analyses include Mike Davis’s (1990) work on Los Angeles, and Don Mitchell’s (1997) penetrating analysis of the urban system of anti-homeless laws.

A Living Revolution
Perhaps I’m wrong, but I sense a little bitterness in Berry’s recent editorials. Rather than celebrating the ongoing intellectual resolution of binary oppositions that is the mark of a living tradition, or leading the search for common ground and the ground for common search by remaking, reconsidering, or re-presenting his own approach (cf. Golledge et al., 1988; Harvey, 1969, 1973, 1996, 2000), Berry concludes that we have gone astray. He reminds us that he is the only social scientist on the Council of the National Academy of Sciences, and in his efforts to educate other councilors about geography, he finds “nothing more persuasive than examples of quality science and no greater turnoff than what one Council member described to me as the ‘fluffy thinking and congenital argumentativeness’ of many social scientists, as well as the ‘lack of reproducibility of their results’” (Berry, 2000a: 192). It is tempting indeed to give in to a congenital argumentativeness over the assertion of One Right Way to Do Scientific Geography, and the implication that we should jettison all parts of our field that are not granted prior approval by the so-called hard scientists on the Council. But that’s not really necessary. Even if we accept Berry’s plea for a geography “firmly committed to individual rights, to the pursuit of generalizable understanding, to metaphysical realism, and therefore to science” (Berry, 1993b: 316), we see a new generation of geographers, engaging in “a continuing interplay between speculation and empirical investigation...”, undertaking work that is “broadly based and multidisciplinary”, with “a continuing concern to keep one foot in theory and the other in practice....” (Berry, 2001b: 561).

These are qualities I value, and I am hardly alone. Why not celebrate the vibrant research being done to understand geographies of the United States today? Markusen (2000) and many other prominent scholars remind us that the infusion of critical social theory opens exciting and important new possibilities for scientific geography. Theories of subjectivity and identity have
problematized the universal, rational economic actor, opening new lines of inquiry on the relations between economic and cultural processes (Miller, 1992). Theories of context and contingency illuminate the inherently geographical expression and constitution of necessary social and economic relations, and modeling advances such as the expansion method, spatial econometrics, and ecological inference offer a means of empirical analysis of contingency (Jones and Casetti, 1992; Jones and Hanham, 1995; King, 1997; Kodras, 1992; O’Loughlin et al., 1995; Sui, 2000). Valuable critical perspectives on the social construction of ‘race’ alert us to the risks of reified categorizations that ignore the specificities of time and place, while sophisticated multilevel modeling techniques yield precise estimates of the consequences (if not the processes) of persistent discrimination by “white” neighborhoods, bankers and underwriters, and by seemingly neutral business practices (Holloway, 1998). Feminist perspectives on the geographical construction of difference reveal the fundamentally gendered nature of the daily urban system for women and for men (Pratt and Hanson, 1994), and some of these relations can be analyzed empirically with causal path analysis (McLafferty and Preston, 1992), partial decomposition analysis (McLafferty and Preston, 1996), covariance structure models (Wyly, 1996), or a highly innovative synthesis of Hagerstrandian time-geography and cutting-edge GIS and visualization techniques (Kwan, 1999).

Regional political economy offers a valuable path away from the dangerous dichotomy between a quantitative new neoclassical economic geography and a qualitative cultural economic geography, while regional applications of vector autoregression techniques cast doubt on simplistic assumptions of the link between free-trade policies, exports, and economic growth (Leichenko, 2000), and spatial equilibrium models provide a compelling challenge to long-held, flawed assumptions on firms’ profit maximization behaviors (Plummer and Sheppard, 2001; Plummer et al., 1998). Contemporary social theory and qualitative methods have allowed a renewed, refined deployment of Q analysis (Atkin, 1974; Gould, 1981; Robbins and Krueger, 2000; Tripathi, 2000). Poststructuralist and feminist critiques of political economy offer genuinely new ways of understanding the realm of the economic (Gibson-Graham, 1993, 1996), and contemporary class heterogeneity in today’s daily urban systems can be mapped with innovative manipulations of standard Census occupational data (Arvidson, 2000).
This is a vibrant, exciting spatial analysis that fuses the very best of the quantitative revolution with rigorous, challenging social theory. It is serious scholarship and serious science, and its practitioners – including delegates from the baby boom generation as well as newly-minted twenty-something Ph.D.s – are busy doing geography while vast swaths of their own discipline are dismissed as “armchair socialism” or “dreamtime postmodernism” or social-science versions of “cold fusion” (Berry, 2001b, p. 561). They are working hard to understand geographies of the United States in the year 2002, and to make them better. I am not convinced that their work is made any easier by repeated attempts to assert the old dichotomies or to present heroic accounts of the 1960s as some sort of Augean period (Berry, 2001b; Gould, 1979). Berry made an enormous contribution to a revolution. Either the revolution lives and changes, or the stables need to be cleaned out again.
References

Hanson, Susan. 1995. “Never Question the Assumptions’ and Other Scenes from the Revolution.” *Urban Geography* 14(6), 552-556.

