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Meaningless statistics...  Many years ago, a New Yorker cartoon portrayed a man at home watching the 
evening news; the anchor reported, “Meaningless statistics were up one-point-five percent this month over 
last month.”  Numerical assertions pervade popular and policy discussion on almost any issue that matters.  
Too often, meaningless statistics are presented as unproblematic facts -- as objective statements of an 
objective, uncontested realities.  Yet “Averages and relationships and trends and graphs are not always 
what they seem.  There may be more in them than meets the eye, and there may be a good deal less.”  
(Darrell Huff (1954).  How to Lie With Statistics.  New York:  W.W. Norton, quote from p. 8.)  Even if you 
think you’ll never wind up doing anything even remotely related to statistical or quantitative work, you’ll 
need to become a sophisticated, inquisitive consumer simply to survive in an information-saturated world.  
Edward Tufte puts it best:  “Making a presentation is a moral act as well as an intellectual activity.  The use 
of corrupt manipulations and blatant rhetorical ploys in a report or presentation -- outright lying, 
flagwaving, personal attacks, etc., setting up phony alternatives, misdirection, jargon-mongering, evading 
key issues, feigning disinterested objectivity, willful misunderstanding of other points of view -- suggests 
that the presenter lacks both credibility and evidence.  To maintain standards of quality, relevance, and 
integrity for evidence, consumers of presentations should insist that presenters be held intellectually and 
ethically responsible for what they show and tell  Thus consuming a presentation is also an intellectual 
and a moral activity.”  Edward Tufte (2006).  Beautiful Evidence.  Cheshire, Connecticut:  Graphics Press, 
LLC, quote from p. 141.  The cartoon was by Dana Fradon, published in The New Yorker, January 31, 
1977.  Image above:  Abasaa (2010).  “Statistics Bureau of Japan.”  Released into the public domain, via 
Wikimedia Commons. 
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“Don’t confuse things that are merely countable with those that really count.”1  On the 
other hand, don’t ignore the specificity and accountability that reliable, relevant 
numerical representations can offer.  The purpose of simple statistical description is to 
provide rigorous, meaningful information about a set of observations regarding some 
aspect of the world.  Descriptive statistics tell us about the amount of variability in this 
set of observations, and they provide several ways to express the “middle” or general 
central tendency of the observations; but descriptive statistics only provide information 
for the set of observations -- these techniques cannot be used to make inferences about 
anything other than the particular pieces of data we’re working with.  Consider an 
example:  below are thirty-five numbers, each representing one response from a person 
filling out the Census of Canada questionnaire for their household in the spring of 2001.2  
People are asked many questions.  The figures below represent responses to the question 
asking people with responsibility for the household finances, for those who rent their 
homes, how much they paid in total for rent, per month.   
 
650 
334 
780 
260 
925 
520 
475 
663 
430 
550 
1300 
475 
450 
501 
569 
613 
597 
600 
650 
200 
400 
603 
655 
530 
263 
301 
805 
400 
517 
510 
652 
431 
350 
592 
550 

 
Descriptive statistics can be used to summarize the information contained in the 
responses offered by these thirty-five people.  This can be very useful information.  Of 
course, we might be far more interested in summarizing the rent payments of the entire 
Canadian population -- or, more precisely, the 3.95 million Canadian households who are 
renters.  But to do that we have to use another approach that provides rules on how to 

                                                
1 Jonathan G. Koomey (2008).  Turning Numbers into Knowledge.  Oakland, CA:  Analytics Press, quote 
from p. 62; Koomey attributes the statement to John Holdren, but a very similar sentiment was once also 
expressed by Albert Einstein. 
2 Data Source:  Statistics Canada (2004).  2001 Census Canada, Public Use Microdata File.  Ottawa: 
Statistics Canada. 
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make safe inferences from small samples that are designed to represent a larger 
population; this other approach is called inferential statistics.  We’ll deal with that later.  
Inferential statistics can be tricky and sometimes a bit difficult to interpret, in comparison 
to the easy-to-grasp simple descriptives.  A great deal of confusion -- some by accident, 
some by design -- results when (flawed) inferential statistics masquerade as simple 
descriptive statistics.  
 
Measures of Variation and Dispersion 
 
But suppose we’re interested in the rent payments reported by these thirty-five Canadian 
households in the spring of 2001.  Five descriptive statistics are most commonly used to 
summarize the degree of variability, and to measure ‘central tendency,’ in a set of 
numbers. 
 
1.  The arithmetic mean or average is simply the sum of all the numbers, divided by the 
total number of observations.  This is by far the most common and familiar measure of 
central tendency.  For our dataset, the sum is 19,101, and of course we have thirty-five 
observations, so the mean is 19,101 divided by 35, or 545.74.  As a shorthand instead of 
full sentences describing calculations like these, it is common to express the mean this 
way for any variable X: 
 

N

X
X ∑=  

 
This is simple shorthand for the mean (the X with the bar over it) is equal to the 
summation (the Greek letter Sigma) of all values of X, divided by N, the number of 
observations. 
 
2.  The median is an alternative measure of central tendency.  The mean is sensitive to 
outliers or extreme cases.  If the first figure in the list above were 6,500 rather than 650, 
then the average would jump from 545.74 to 712.88.  A single extreme or bizarre 
observation can exert considerable influence on the mean.  The median, by contrast, is 
not affected by outliers.  The median is the mid-point of the distribution:  rank the 
numbers from smallest to largest, and count halfway down the list.  So arrange the 
numbers like this: 
 
200 
260 
263 
301 
334 
350 
400 
400 
430 
431 
450 
475 
475 
501 
510 
517 
520 
530 
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550 
550 
569 
592 
597 
600 
603 
613 
650 
650 
652 
655 
663 
780 
805 
925 
1300 

 
and the halfway point in the list (shown here in bold) is the median.  (In cases where we 
have an even number of observations, then the two figures tied for the middle place are 
averaged).  Median figures are much more stable, and less influenced by idiosyncratic 
events, than averages.   
 
3.  The range is the difference between the largest and the smallest values.  In our case, 
the highest reported rent is $1,300 per month, and the lowest is $200; the range is thus 
1,100. 
 
4.  The variance is just what it sounds like -- a measure of the degree of total variability 
in a set of numbers.  We begin by calculating the deviation between each observation and 
the mean; we’ll call the deviation little x to distinguish it from the values of X, 
 

XXx −=  
 
If we do this for our dataset, we get this: 
 
X  x         
 
200  -345.74 
260  -285.74 
263  -282.74 
301  -244.74 
334  -211.74 
350  -195.74 
400  -145.74 
400  -145.74 
430  -115.74 
431  -114.74 
450  -95.74 
475  -70.74 
475  -70.74 
501  -44.74 
510  -35.74 
517  -28.74 
520  -25.74 
530  -15.74 
550  4.26 
550  4.26 
569  23.26 
592  46.26 
597  51.26 
600  54.26 
603  57.26 
613  67.26 
650  104.26 
650  104.26 
652  106.26 
655  109.26 
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663  117.26 
780  234.26 
805  259.26 
925  379.26 
1300  754.26 

 
Now, if we wanted a total measure of variability, the logical next step would be to add up 
all the deviations from the mean.  Unfortunately, if we do this, the values will all sum to 
zero.  This happens every time, no matter what dataset we choose:  calculating deviations 
from the mean and then summing the deviations adds up to zero, because the magnitudes 
above the mean cancel out those below the mean.   
 
If we square the deviations, however -- multiplying each deviation value by itself -- we 
can get around this problem.  If we then add up the squared deviations, the result will 
always be a non-negative number that expresses the total amount of variability (although 
it does not adjust for the number of observations).  This is called the “sum of squares,” 
and you’ll see it mentioned, usually as an intermediate step, in many statistical 
approaches. 
 
The variance is simply the sum of squares adjusted for the number of observations.  
Variance is usually referred to as s2, and it is calculated by summing the squared 
deviations from the mean and dividing by the number of observations. 
 

( )
N

XX
s

2

2 ∑ −
=  

 
The variance is the average squared deviation of the values from the mean.  It is a widely 
used measure of the variability or “spread” of a set of numbers.  If it seems a bit awkward 
or confusing, then we can take one more step to obtain something that is much more 
familiar. 
 
5.  The standard deviation is the square root of the variance.  The standard deviation is 
thus the average difference of all the observations from the mean; it captures how close 
or far all the observations are from the average.  The standard deviation is commonly 
denoted by lowercase sigma, σ 

( )
N

XX
2∑ −

=σ  

 

For the dataset above, σ is 201.92.  The standard deviation is a very useful statistic.  It 
provides a way to determine how observations cluster around the average.  It also 
provides a consistent way to adjust variables that are measured on different scales.  
Suppose we wanted to compare a particular household’s rent (measured in dollars, with a 
range as noted above of 1,300) to the age of the householder (measured in years, with a 
range a lot less than 1,300!).  This can be done if we express values in terms of z-scores, 
also known as standard scores. 

σ

XX
z

−
=  
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If a household’s rent is 1.0 standard deviations above the mean -- that is, 201.92 above 
the mean of 545.74, or 747.66 -- then this household has a z-score of 1.0 for rent.  
Household age, measured on a very different scale with a wildly different range, can 
similarly be expressed in terms of standard deviations:  if the average age were, say, 42.5 
years, with a standard deviation of 11.5, then someone reporting their age as 54 would 
have a z-score of 1.0 for age.  Z-scores are widely used to compare variables that are 
measured on different scales.  These standard scores help to put everything on the same, 
comparable measurement scale. 
 
Contingency Tables 
 
Measures of spread and dispersion provide useful information, but they don’t get us very 
far in interpretation.  For that, we’re usually interested in exploring the associations 
between different characteristics.  Suppose we’re interested in a small town in the B.C. 
interior that’s fortunate to have enjoyed population growth and new construction in recent 
years.  We’re interested in the association between the timing of residential construction 
and the boundary between the town and the surrounding rural areas, so we obtain the 
following information: 
 

Table 1.  Contingency Table for Rural/Urban Status and 
Period of Residential Construction.

observed frequencies
Rural Urban Total

Built before 1970 30 20 50
Built 1970-2000 16 28 44
Built after 2000 8 52 60
Total 54 100 154 

 
Is there an association between the rural-urban boundary and the age of the housing 
stock?  At first glance, there does seem to be a link.  Thirty of 54 homes in the rural area 
were built before 1970, while only twenty out of 100 homes in the town were built that 
long ago.  But how strong is this association?  Could it have occurred purely by chance?   
 
More than a century ago, a man named Pearson developed a reliable method of obtaining 
answers to questions like this.3  Carl Pearson was born in London of Yorkshire descent in 
1857, and after graduating from Cambridge he enrolled at Heidelberg University; 
Heidelberg enrolled him as “Karl,” when he arrived in 1879, and Pearson himself used 
both the “C” and “K” interchangeably until 1884, when he began using “KP” 
consistently.  Pearson had wide-ranging interests in philosophy and mathematics, and he 
was soon swept up in the ferment of scientific innovation that was transforming 
observation, measurement, probability, and other aspects of what today would be 
regarded as modern statistics.  In the 1890s, Pearson and many others were struggling to 
find ways of assessing the “goodness of fit” between distributions of things that were 
                                                
3 For a fascinating account, see M. Eileen Magnello (2007).  “Karl Pearson and the Origins of Modern 
Statistics:  An Elastician Becomes a Statistician.”  The Rutherford Journal 1, 1-13. 
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observed, compared to what would be expected on the basis of various kinds of 
assumptions -- particularly, the reasonable expectation that the differences were simply 
the product of random chance.  Consider the example of our contingency table.  If there 
were no relationship between rural/urban status and period of construction, what would 
the table of frequencies look like?  If there were no relationship, then we would expect, 
for instance, the proportion of rural homes built before 1970 to be the same as the 
proportion for urban homes.  Since 50 out of all 154 homes in our little study area were 
built before 1970 (about 32.5 percent), this would mean we would expect that 32.5 
percent of the 54 rural homes were built before 1970, and 32.5 percent of the 100 urban 
homes were also constructed before 1970.  We can work these expected frequencies out 
(we’ll call them fe) if we multiply each row total by the column total, and divide by the 
grand total for the entire table.  So for the first cell -- rural homes built before 1970 -- we 
would multiply the row total (50) by the column total (54), and then divide by the grand 
total of 154: 
 

Rural Urban Total
Built before 1970 fe 50
Built 1970-2000 44
Built after 2000 60
Total 54 100 154

expected frequency (fe)=(50 x 54)/154=17.5  
 
If we do this for all the cells, we obtain: 
 

Table 2.  Contingency Table with Observed and Expected Frequencies.

observed frequencies expected frequencies
Rural Urban Total Rural Urban Total

Built before 1970 30 20 50 Built before 1970 17.5 32.5 50
Built 1970-2000 16 28 44 Built 1970-2000 15.4 28.6 44
Built after 2000 8 52 60 Built after 2000 21.0 39.0 60
Total 54 100 154 Total 54 100 154 
 
The table on the right represents the breakdown we’d expect if there were no relationship 
between the variables in the rows and the columns.  The table on the left is the 
breakdown we actually observed.  The crucial question is:  could the differences between 
the observed and expected outcomes result purely from chance?  How much difference 
between the observed and expected frequencies is required before we’re prepared to say 
that there is a significant relationship between the two variables? 
 
Pearson’s work demonstrated that it was possible to a) work out, in advance, the 
deviations that would occur purely by chance, b) calculate the differences between 
observed and expected frequencies, and c) compare the value of this difference to the 
deviations produced solely by chance, random factors.  Pearson called this the chi-square 
test for goodness of fit, after the Greek letter for c.   

∑ −
=

e

eo

f

ff 2
2 )(χ  
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Table 3.  Calculating the Difference between Observed and Expected Frequencies.

observed frequencies expected frequencies
Rural Urban Total Rural Urban Total

Built before 1970 30 20 50 Built before 1970 17.5 32.5 50
Built 1970-2000 16 28 44 Built 1970-2000 15.4 28.6 44
Built after 2000 8 52 60 Built after 2000 21.0 39.0 60
Total 54 100 154 Total 54 100 154

(squared differences between observed and expected)
divided by expected

Built before 1970 8.929 4.808
Built 1970-2000 0.023 0.013
Built after 2000 8.048 4.333

Total 26.153

[(30-17.5)2 / 17.5] = 8.929  
 
After we calculate the squared differences and divide by the expected, we add up all the 
results to obtain one number for the entire table -- in this case, 26.153.  This is the χ2 
statistic, and it represents a summary measure of how far a particular set of numbers 
departs from what we would expect based purely on chance.  Each distinct table of 
numbers will have its own unique χ2 value, and since χ2 is calculated by summing values 
for each cell, it is affected by how many rows and columns we have in a particular table:  
all else constant, adding more rows and/or columns will result in a higher χ2 value.  This 
means that to interpret any particular χ2 value, we have to adjust for the number of rows 
and columns using a concept called “degrees of freedom”: 
 
df = (number of rows minus 1) x (number of columns minus 1) 
 
For our table, df=(3-1)x(2-1)=2.  ‘Degrees of freedom’ refers to the unique information 
contained in a set of numbers:  once we know the values in all but the last row of a 
particular column, then there is no ‘freedom’ in deciding what value is in the last -- it’s 
pre-determined by the difference between the total and the sum of all the other cell 
values.   
 
With a χ2  value and the corresponding df for a particular contingency table, we can now 
answer our key question:  are the differences between the observed and expected 
frequencies large enough to have not occurred by chance?  Pearson worked out the values 
of χ2 for many different dfs that resulted from purely random, chance fluctuations, and 
today, nearly every introductory statistics textbook on the planet includes an appendix 
table for the “Critical Values of the Chi-Square Test.”  Typically, these tables provide 
thresholds for various significance levels.  With df=2, if there is no association between 
two variables in any table, then there is only a 10 percent probability that the calculated 
χ2 will be more than 4.60; there’s only a 5 percent chance that it will exceed 5.99; there’s 
only a 1 percent chance it will be more than 9.21; and there is only a 0.01 chance -- one 
time out of a thousand -- that the χ2 value will exceed 13.8.  Since our calculated χ2 value 
(26.1) far exceeds any of these values, we can have considerable confidence that the 
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differences are not simply the result of pure, random chance fluctuations.  There does 
seem to be an association between these two characteristics. 
 
An Example in Stata 
 
Look for the file named “2001hh.dta” in the geog450/commute directory on the G: drive.  
Copy the file to 
 
c:\data\pumf\2001hh.dta 
 
Now open STATA and issue these commands in the command panel: 
 
set memory 200m 
 
use “c:\data\pumf\2001hh.dta” 

 
You should see a screen that look something like this. 
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The dataset you have on the screen is the 2001 Census of Canada, Public-Use Microdata 
File, or PUMF.  This is an anonymized, random sample of the responses provided by 
each household to the Census Questionnaires distributed in the Spring of 2001.  If you 
issue the  
 
describe 

 
command you’ll quickly notice that we have 151 variables, for a total of 312,513 
observations.  Each observation represents the responses for the people in a particular 
household, and these households were carefully chosen through random sampling 
procedures that we’ll explore next week.  For now, let’s simply take a look at a few 
simple descriptive statistics on these households. 
 
Issue the command 
 
summarize hhsize, detail 
 

And you’ll notice that the mean number of persons per household is 2.55, with a variance 
of 1.93 and a standard deviation of 1.39.  The median is not labeled specifically, but you 
can figure it out quickly if you look at the ‘percentiles’ on the left -- this is simply the 
ranked list of all observations from smallest to largest, with various points on the 
distributions indicated.  The median, recall, is the halfway point -- the 50th percentile.  So 
the median number of persons per household for the PUMF sample is 2. 
 
 
             Number of persons in the household 
--------------------------------------------------- ---------- 
      Percentiles      Smallest 
 1%            1              1 
 5%            1              1 
10%            1              1       Obs              312513 
25%            1              1       Sum of Wgt.      312513 
 
50%            2                      Mean           2.551507 
                        Largest       Std. Dev.       1.39274 
75%            4              8 
90%            4              8       Variance       1.939724 
95%            5              8       Skewness       .8702244 
99%            6              8       Kurtosis       3.397734 
 

Now let’s explore a contingency table.  Issue the command 
 
tabulate builth tenurh 
 

and you’ll obtain this. 
 

     Period of |        Tenure 
  construction | Owned (wi  Rented (f |     Total 
---------------+----------------------+---------- 
1920 or before |    14,528      6,406 |    20,934  
     1921-1945 |    14,586      9,193 |    23,779  
     1946-1960 |    31,163     18,292 |    49,455  
     1961-1970 |    27,252     22,630 |    49,882  
     1971-1980 |    42,737     23,510 |    66,247  
     1981-1985 |    17,650      9,433 |    27,083  
     1986-1990 |    21,477      7,579 |    29,056  
     1991-1995 |    17,975      6,041 |    24,016  
     1996-2001 |    18,315      3,746 |    22,061  
---------------+----------------------+---------- 
         Total |   205,683    106,830 |   312,513  
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Is there any relationship between owning and renting, on the one hand, and eras of 
construction of Canada’s housing stock?  We can test for this association if we ask for a 
chi-square statistic.  Issue the command 
 
tabulate builth tenurh, chi2 
 
 
     Period of |        Tenure 
  construction | Owned (wi  Rented (f |     Total 
---------------+----------------------+---------- 
1920 or before |    14,528      6,406 |    20,934  
     1921-1945 |    14,586      9,193 |    23,779  
     1946-1960 |    31,163     18,292 |    49,455  
     1961-1970 |    27,252     22,630 |    49,882  
     1971-1980 |    42,737     23,510 |    66,247  
     1981-1985 |    17,650      9,433 |    27,083  
     1986-1990 |    21,477      7,579 |    29,056  
     1991-1995 |    17,975      6,041 |    24,016  
     1996-2001 |    18,315      3,746 |    22,061  
---------------+----------------------+---------- 
         Total |   205,683    106,830 |   312,513  
 
          Pearson chi2(8) =  8.0e+03   Pr = 0.000 
 

Notice that the χ2 value is huge -- so large that STATA expresses it in scientific notation 
(8.0 times ten raised to the power of 3, or about 8,000).  The corresponding probability of 
obtaining a figure this large solely from random chance fluctuations is extremely low -- 
rounded off to 0.000.   
 
The χ2 test is extremely versatile, and it is widely used, but it is also affected by sample 
size.  
 
Think carefully about that last word, though -- sample.  Our discussion today focused on 
simple descriptive statistics -- numerical summaries of a set of numbers, without any 
inference to the broader “population” that those numbers purport to represent.  But of 
course these inferences are crucial, and so we will need to move from the realm of 
descriptive statistics to inferential techniques.  Let’s begin by considering the effect of 
sampling on our analysis of Canadian households.  Note the grand total in the output 
above -- 312,513.  This is the number of households who were sampled and interviewed 
to obtain responses to the many questions on the Census questionnaire.  Statistics Canada 
also provides information allowing us to figure out how many households in the 
population are represented by each sampled household.  Issue the command 
 
tabulate builth tenurh [fweight=weighth] 
 
     Period of |        Tenure 
  construction | Owned (wi  Rented (f |     Total 
---------------+----------------------+---------- 
1920 or before |   537,536    237,022 |   774,558  
     1921-1945 |   539,682    340,141 |   879,823  
     1946-1960 | 1,153,031    676,804 | 1,829,835  
     1961-1970 | 1,008,324    837,310 | 1,845,634  
     1971-1980 | 1,581,269    869,870 | 2,451,139  
     1981-1985 |   653,050    349,021 | 1,002,071  
     1986-1990 |   794,649    280,423 | 1,075,072  
     1991-1995 |   665,075    223,517 |   888,592  
     1996-2001 |   677,655    138,602 |   816,257  
---------------+----------------------+---------- 
         Total | 7,610,271  3,952,710 |11,562,981 
 

Now that’s more like it.  The PUMF sample -- 312 thousand sampled households -- 
corresponds to a total population of about 11.5 million households.  The “fweight” option 
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asks STATA to tabulate the variables of interest, “weighting” each sampled record 
according to the value of “weighth” -- which is the number assigned by Statistics Canada 
to each household, representing the number of population households represented by each 
sample observation.  For the largest social surveys that provide large samples chosen 
according to strict rules of random selection, the weight value will typically be the same 
for each observation (here it is 37 for all households).  Smaller surveys, with fewer 
sampled observations, are much more likely to “under-sample” some kinds of 
phenomenon, and to “over-sample” others; those who design these smaller surveys, then, 
must assign differential weights to various observations to compensate for this sampling 
variability. 
 
One final note of caution.  Issue the command 
 
tabulate builth tenurh [fweight=weighth], chi2 
 
     Period of |        Tenure 
  construction | Owned (wi  Rented (f |     Total 
---------------+----------------------+---------- 
1920 or before |   537,536    237,022 |   774,558  
     1921-1945 |   539,682    340,141 |   879,823  
     1946-1960 | 1,153,031    676,804 | 1,829,835  
     1961-1970 | 1,008,324    837,310 | 1,845,634  
     1971-1980 | 1,581,269    869,870 | 2,451,139  
     1981-1985 |   653,050    349,021 | 1,002,071  
     1986-1990 |   794,649    280,423 | 1,075,072  
     1991-1995 |   665,075    223,517 |   888,592  
     1996-2001 |   677,655    138,602 |   816,257  
---------------+----------------------+---------- 
         Total | 7,610,271  3,952,710 |11,562,981  
 
          Pearson chi2(8) =  2.9e+05   Pr = 0.000 
 

Now compare the χ2 value above -- 2.9 x 105 -- to what we obtained with exactly the 
same variables using the unweighted observations earlier.  The proportions in various 
parts of the table are exactly the same; we’ve simply multiplied everything by the 
household weight (37), inflating the χ2 statistic, and greatly increasing the likelihood that 
we will detect strong associations even when they may not really exist.  This is why it’s 
so important to think through the meaning of statistical tests and procedures before you 
go anywhere near the computer.  As computer processing speeds accelerate, it’s possible 
to do more and more stuff, faster and faster.  This also means it’s possible to make 
massive, stupid mistakes faster than ever before.  And thus meaningless statistics may 
have increased by much more than one point five percent this month over last month! 


