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M eaningless statistics... Many years ago, a New Yorker cartoon portrayecha at home watching the
evening news; the anchor reported, “Meaninglesssts were up one-point-five percent this montkro

last month.” Numerical assertions pervade popatar policy discussion on almost any issue thaterstt
Too often, meaningless statistics are presented@®blematic facts -- as objective statementsiof a
objective, uncontested realities. Yet “Averaged melationships and trends and graphs are not alway
what they seem. There may be more in them thamsrttezeye, and there may be a good deal less.”
(Darrell Huff (1954). Howto Lie With Statistics. New York: W.W. Norton, quote from p. 8.) Eviéyou
think you'll never wind up doing anything even reelp related to statistical or quantitative workysil

need to become a sophisticated, inquisitive conssimgly to survive in an information-saturated leor
Edward Tufte puts it best: “Making a presentai®a moral act as well as an intellectual activithe use

of corrupt manipulations and blatant rhetoricalysl a report or presentation -- outright lying,
flagwaving, personal attacks, etc., setting up ptadternatives, misdirection, jargon-mongering,ding

key issues, feigning disinterested objectivity [fwilmisunderstanding of other points of view -ggests

that the presenter lacks both credibility and evide To maintain standards of quality, relevaace,
integrity for evidence, consumers of presentatsirmild insist that presenters be held intelleciaid
ethically responsible for what they show and fEllus consuming a presentation is also an intellectual

and a moral activity.” Edward Tufte (2006)Beautiful Evidence. Cheshire, Connecticut: Graphics Press,
LLC, quote from p. 141. The cartoon was by DaredBn, published ifthe New Yorker, January 31,

1977. Image above: Abasaa (2010). “Statistice®uw of Japan.” Released into the public doman, v
Wikimedia Commons.



“Don’t confuse things that are merely countablenvitose that really count.”On the
other hand, don’t ignore the specificity and acdability that reliable, relevant
numerical representations can offer. The purpbdsemple statistical description is to
provide rigorous, meaningful information about afeobservations regarding some
aspect of the world. Descriptive statistics tsllalbout the amount of variability in this
set of observations, and they provide several w@agxpress the “middle” or general
central tendency of the observations; but deseapttatistics only provide information
for the set of observations -- these techniquesatare used to make inferences about
anything other than the particular pieces of dagaewvorking with. Consider an
example: below are thirty-five numbers, each repnéing one response from a person
filling out the Census of Canada questionnairettieir household in the spring of 2001.
People are asked many questions. The figures belpresent responses to the question
asking people with responsibility for the househiidnces, for those who rent their
homes, how much they paid in total for rent, pentho

650
334
780
260
925
520
475
663
430
550
1300
475
450
501
569
613
597
600
650
200
400
603
655
530
263
301
805
400
517
510
652
431
350
592
550

Descriptive statistics can be used to summarize the information contaiméke
responses offered by these thirty-five people.s Tan be very useful information. Of
course, we might be far more interested in sumnmayithe rent payments of the entire
Canadian population -- or, more precisely, the 3r@lbon Canadian households who are
renters. But to do that we have to use anotheroapp that provides rules on how to

! Jonathan G. Koomey (2008Jurning Numbersinto Knowledge. Oakland, CA: Analytics Press, quote
from p. 62; Koomey attributes the statement to Jdbldren, but a very similar sentiment was once als
expressed by Albert Einstein.

2 Data Source: Statistics Canada (200001 Census Canada, Public Use Microdata File. Ottawa:
Statistics Canada.



make safe inferences from small samples that aigmiksd to represent a larger
population; this other approach is calleferential statistics. We’ll deal with that later.
Inferential statistics can be tricky and sometiradst difficult to interpret, in comparison
to the easy-to-grasp simple descriptives. A gdeal of confusion -- some by accident,
some by design -- results when (flawed) inferergiatistics masquerade as simple
descriptive statistics.

M easures of Variation and Dispersion

But suppose we're interested in the rent paymemerted by these thirty-five Canadian
households in the spring of 2001. Five descripshegistics are most commonly used to
summarize the degree of variability, and to measeatral tendency,’ in a set of
numbers.

1. The arithmetienean or average is simply the sum of all the numbers, divided hg t
total number of observations. This is by far thestcommon and familiar measure of
central tendency. For our dataset, the sum i019 dnd of course we have thirty-five
observations, so the mean is 19,101 divided byB545.74. As a shorthand instead of
full sentences describing calculations like thé&se,common to express the mean this
way for any variable X:

wo2X
N

This is simple shorthand for the mean (the X wiit bar over it) is equal to the
summation (the Greek letter Sigma) of all valueX oflivided by N, the number of
observations.

2. Themedian is an alternative measure of central tendencye rmban is sensitive to
outliers or extreme cases. If the first figureha list above were 6,500 rather than 650,
then the average would jump from 545.74 to 7128&ingle extreme or bizarre
observation can exert considerable influence omtban. The median, by contrast, is
not affected by outliers. The median is the midipof the distribution: rank the
numbers from smallest to largest, and count halfd@yn the list. So arrange the
numbers like this:

200
260
263
301
334
350
400
400
430
431
450
475
475
501
510
517
520
530



550
550
569
592
597
600
603
613
650
650
652
655
663
780
805
925
1300

and the halfway point in the list (shown here itdpas the median. (In cases where we
have an even number of observations, then theiguoeks tied for the middle place are
averaged). Median figures are much more stabtk)ems influenced by idiosyncratic
events, than averages.

3. Therange is the difference between the largest and thelsstalalues. In our case,
the highest reported rent is $1,300 per month te@dowest is $200; the range is thus
1,100.

4. Thevariance is just what it sounds like -- a measure of thgree of total variability

in a set of numbers. We begin by calculating #ng@ation between each observation and
the mean; we’ll call the deviation littleto distinguish it from the values Xf

x=X-X

If we do this for our dataset, we get this:

X X

200 -345.74
260 -285.74
263 -282.74
301 -244.74
334 -211.74
350 -195.74
400 -145.74
400 -145.74
430 -115.74
431 -114.74
450 -95.74
475 -70.74
475 -70.74
501 -44.74
510 -35.74
517 -28.74
520 -25.74
530 -15.74
550 4.26
550 4.26
569 23.26
592 46.26
597 51.26
600 54.26
603 57.26
613 67.26
650 104.26
650 104.26
652 106.26
655 109.26



663 117.26

780 234.26
805 259.26
925 379.26
1300 754.26

Now, if we wanted a total measure of variabilityg fogical next step would be to add up
all the deviations from the mean. Unfortunateflyye do this, the values will all sum to
zero. This happens every time, no matter whatsdatae choose: calculating deviations
from the mean and then summing the deviations agdds zero, because the magnitudes
above the mean cancel out those below the mean.

If we square the deviations, however -- multiplygagrh deviation value by itself -- we
can get around this problem. If we then add upstheared deviations, the result will
always be a non-negative number that expressestdleamount of variability (although
it does not adjust for the number of observatiofg)is is called the “sum of squares,”
and you'll see it mentioned, usually as an interiaedstep, in many statistical
approaches.

The variance is simply the sum of squares adjustethhe number of observations.
Variance is usually referred to & and it is calculated by summing the squared
deviations from the mean and dividing by the nundiebservations.

Thevariance is the average squared deviation of the values from the mean. It is a widely
used measure of the variability or “spread” of aadeumbers. If it seems a bit awkward
or confusing, then we can take one more step @mbbmething that is much more
familiar.

5. Thestandard deviation is the square root of the variance. The standavehtion is
thusthe average difference of all the observations from the mean; it captures how close
or far all the observations are fromthe average. The standard deviation is commonly
denoted by lowercase sigma,

(X - X

N

O =

For the dataset abowe,is 201.92. The standard deviation is a very ussétistic. It
provides a way to determine how observations clustaund the average. It also
provides a consistent way to adjust variablesdhaimeasured on different scales.
Suppose we wanted to compare a particular housshrelat (measured in dollars, with a
range as noted above of 1,300) to the age of thedhmlder (measured in years, with a
range a lot less than 1,300!). This can be dong iexpress values in termsaécores,
also known astandard scores.
X=X

(o}
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If a household’s rent is 1.0 standard deviatiorsvalihe mean -- that is, 201.92 above
the mean of 545.74, or 747.66 -- then this househas a z-score of 1.0 for rent.
Household age, measured on a very different scifieanvildly different range, can
similarly be expressed in terms of standard dexiati if the average age were, say, 42.5
years, with a standard deviation of 11.5, then soreeeporting their age as 54 would
have a z-score of 1.0 for age. Z-scores are widedyl to compare variables that are
measured on different scales. These standardsskhelg to put everything on the same,
comparable measurement scale.

Contingency Tables

Measures of spread and dispersion provide usdfuinmation, but they don’t get us very
far in interpretation. For that, we're usuallyargsted in exploring the associations
between different characteristics. Suppose weaterésted in a small town in the B.C.
interior that’s fortunate to have enjoyed populatgzgowth and new construction in recent
years. We're interested in the association betwleeniming of residential construction
and the boundary between the town and the surrogndral areas, so we obtain the
following information:

Table 1. Contingency Table for Rural/Urban Status and
Period of Residential Construction.

observed frequencies

Rural Urban Total
Built before 1970 30 20 50
Built 1970-2000 16 28 44
Built after 2000 8 52 60
Total 54 100 154

Is there an association between the rural-urbandsry and the age of the housing
stock? At first glance, there does seem to beka [Thirty of 54 homes in the rural area
were built before 1970, while only twenty out of0lllomes in the town were built that
long ago. But how strong is this association? I€@have occurred purely by chance?

More than a century ago, a man named Pearson gededoreliable method of obtaining
answers to questions like tHisCarl Pearson was born in London of Yorkshire desin
1857, and after graduating from Cambridge he ezuladk Heidelberg University;
Heidelberg enrolled him as “Karl,” when he arrivadl879, and Pearson himself used
both the “C” and “K” interchangeably until 1884, ainhe began using “KP”
consistently. Pearson had wide-ranging interesphilosophy and mathematics, and he
was soon swept up in the ferment of scientific wrat@n that was transforming
observation, measurement, probability, and otheeas of what today would be
regarded as modern statistics. In the 1890s, &earsd many others were struggling to
find ways of assessing the “goodness of fit” betweistributions of things that were

3 For a fascinating account, see M. Eileen Magn(@0®7). “Karl Pearson and the Origins of Modern
Statistics: An Elastician Becomes a Statisticiaftié Rutherford Journal 1, 1-13.



observed, compared to what would be expected obabis of various kinds of
assumptions -- particularly, the reasonable expiectéhat the differences were simply
the product of random chance. Consider the exaofmer contingency table. If there
were no relationship between rural/urban statuspand of construction, what would
the table of frequencies look like? If there weoerelationship, then we would expect,
for instance, the proportion of rural homes bugfdre 1970 to be the same as the
proportion for urban homes. Since 50 out of af hdmes in our little study area were
built before 1970 (about 32.5 percent), this waulehn we would expect that 32.5
percent of the 54 rural homes were built before01@nd 32.5 percent of the 100 urban
homes were also constructed before 1970. We cak these expected frequencies out
(we’ll call themfe) if we multiply each row total by the column tqtahd divide by the
grand total for the entire table. So for the fastl -- rural homes built before 1970 -- we
would multiply the row total (50) by the column &b(54), and then divide by the grand
total of 154:

Rural Urban Total
Built before 1974  fe| 50
Built 1970-2000 44
Built after 2000 60
Total 54 100 154

expected frequency (fe)=(50 x 54)/154=17.5

If we do this for all the cells, we obtain:

Table 2. Contingency Table with Observed and Expected grgjes.

observed frequencies expected frequencies
Rural Urban Total Rural Urban Total
Built before 1970 30 20 50 Built before 1970 175 32.5 50
Built 1970-2000 16 28 44 Built 1970-2000 15.4 28.6 44
Built after 2000 8 52 60 Built after 2000 21.0 39.0 60
Total 54 100 154 Total 54 100 154

The table on the right represents the breakdownd eepect if there were no relationship
between the variables in the rows and the coluniine table on the left is the
breakdown we actually observed. The crucial qoess: could the differences between
the observed and expected outcomes result pugaty éhance? How much difference
between the observed and expected frequenciegused before we're prepared to say
that there is a significant relationship betweenttiho variables?

Pearson’s work demonstrated that it was possildg Wwork out, in advance, the
deviations that would occur purely by chance, ljudate the differences between
observed and expected frequencies, and ¢) comipanatue of this difference to the
deviations produced solely by chance, random fact®earson called this the chi-square
test for goodness of fit, after the Greek letterdo

f —f)°
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Table3. Calculating the Difference between Observed axueBed Frequencies.

observed frequencies expected frequencies
Rural Urban Total Rural Urban Total
Built before 1970 [___3p 20 50 Built before 190175 325 50
Built 1970-2000 16 28 44 Built 1970-2000 15.4 28.6 44
Built after 2000 8 52 60 Built after 2000 21.0 39.0 60
Total 54 100 154 Total 54 100 154

(squared differences between observed and expected)
divided by expected
Built before 1970 [ 8.929] 4.80¢
Built 1970-2000 0.023 0.013
Built after 2000 8.048 4.333
Total 26.153

[(30-17.5f / 17.5] = 8.929

After we calculate the squared differences anddéilay the expected, we add up all the
results to obtain one number for the entire table this case, 26.153. This is tje
statistic, and it represents a summary measurewffar a particular set of numbers
departs from what we would expect based purelynamce. Each distinct table of
numbers will have its own uniqué value, and sincg? is calculated by summing values
for each cell, it is affected by how many rows aotlmns we have in a particular table:
all else constant, adding more rows and/or coluwitisesult in a higher®value. This
means that to interpret any particugdrvalue, we have to adjust for the number of rows
and columns using a concept called “degrees oflfne:

df = (number of rows minus 1) x (number of columnsusii)

For our table, df=(3-1)x(2-1)=2. ‘Degrees of freed refers to the unique information
contained in a set of numbers: once we know theesgan all but the last row of a
particular column, then there is no ‘freedom’ ircideng what value is in the last -- it's
pre-determined by the difference between the totdlthe sum of all the other cell
values.

With ay? value and the correspondidfjfor a particular contingency table, we can now
answer our key question: are the differences batwiee observed and expected
frequencies large enough to have not occurred apadf? Pearson worked out the values
of x?for many differentfs that resulted from purely random, chance fluauat and
today, nearly every introductory statistics textbon the planet includes an appendix
table for the “Critical Values of the Chi-Squarestié Typically, these tables provide
thresholds for various significance levels. With2, if there is no association between
two variables in any table, then there is only @é&frent probability that the calculated
x* will be more than 4.60; there’s only a 5 percdmtre that it will exceed 5.99; there’s
only a 1 percent chance it will be more than 94 there is only a 0.01 chance -- one
time out of a thousand -- that thvalue will exceed 13.8. Since our calculagédalue
(26.1) far exceeds any of these values, we can t@v&derable confidence that the



differences are not simply the result of pure, mnathance fluctuations. There does
seem to be an association between these two chas#Cs.

An Examplein Stata

Look for the file named “2001hh.dta” in the geogs®nmute directory on the G: drive.
Copy the file to

c:\data\pumf2001lhh.dta

Now open STATA and issue these commands in the @mdmpanel:

set memory 200m

use “c:\data\pumf\2001hh.dta”

You should see a screen that look something lile th

data\pumf\2001hh.dta - [Results]

& Fle
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Edt Data Graphics Statistics User Window Help
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Review X
Command
1 st memory Z00m
2 use "c:idataipumf|2001hh, dka”

Variables x
Hame Label Type | Format |4
CASEID long  %L2...
hhsort Unique record identifier long  %l2...
provh Pravince o kerritory it %a.0g
aneh  Consus metropalten area - cma n g
roomh Humber of rooms it %a.0g
broomh Humber of bedrooms it %a.0g
rpairh Condition of dweling it %8.0g
valueh Value of dreling long  %lZ..
tenurh Tenure it %8.0g
reondh Tenure - condominiumn it %a.0g
morgh Presence of mortgage it %a.0g
amph Owner's major payments - manthly it %8.0g
grosrth Monthly gross rent it %a.0g
condfh Condaminium fees it %8.0g
deypeh Structural type of dweling it %809
builth Period of canstruction it %8.0g
nuhmh Humber of household maintainers it %a.0g
secrell Second household mainkainer - relationship to primary hous,. ik %:8.0g
secrel2 Situation of the primary household maintainers spouse or c... ik %8.0g
hhsie Humber of persans in the household it %a.0g
hhcomp Household composition it %8.0g
nunfh Humber of unattached individuals in the household it %a.0g
nuldgh Humber of lodgers in the housshald it %8.0g
hhinda Indicator of persons 0 to 4 years of age it %a.0g
hhindo Indicater of persons Ota 17 years of age it %8.0g
hhpera Humber of persons under 5 years of age inthe household ik %8.0g
hhperb Humber of persons § ko 17 vears of age in the household it %8.0g
hhperd Humber of persons 18 to 24 years of age inthe household ik %8.0g
hhpere Humber of persans 25 ko 59 years of age inthe household ik %:8.0g
hhperf Humber of persons 60 ko 64 years of age inthe household it %8.0g
hhperg Humber of persans 65 ko 74 years of age inthe household ik %:8.0g
hhperh Humber of persons 75 years of age and over inthe houssh... ik %8.0
nuefh Humber of economic Families in the household it %a.0g
hmefst Primary hausehold maintainers economic Famiy status it %808 v
< >




The dataset you have on the screen is the 200lu€en£anada, Public-Use Microdata
File, or PUMF. This is an anonymized, random s@&ngblthe responses provided by
each household to the Census Questionnaires digdlin the Spring of 2001. If you
issue the

describe

command you'll quickly notice that we have 151 ahtes, for a total of 312,513
observations. Each observation represents themssp for the people in a particular
household, and these households were carefullyechibsough random sampling
procedures that we’ll explore next week. For nl@is simply take a look at a few
simple descriptive statistics on these households.

Issue the command

summarize hhsize, detail

And you’ll notice that the mean number of persoeshpusehold is 2.55, with a variance
of 1.93 and a standard deviation of 1.39. The aredi not labeled specifically, but you
can figure it out quickly if you look at the ‘pergtdes’ on the left -- this is simply the
ranked list of all observations from smallest t@é&st, with various points on the
distributions indicated. The median, recall, is Halfway point -- the 50th percentile. So
the median number of persons per household foPtdF sample is 2.

Number of persons in the household

Percentiles Smallest

1% 1 1

5% 1 1
10% 1 1 Obs 312513
25% 1 1 Sum of Wat. 312513
50% 2 Mean 2.551507

Largest Std. Dev. 1.39274

75% 4 8

90% 4 8 Variance 1.939724
95% 5 8 Skewness .8702244
99% 6 8 Kurtosis 3.397734

Now let’s explore a contingency table. Issue themand

tabulate builth tenurh

and you’ll obtain this.

Period of | Tenure
construction | Owned (wi Rented (f| Total
+ +

1920 or before | 14,528 6,406 | 20,934
1921-1945| 14,586  9,193| 23,779
1946-1960 | 31,163 18,292 | 49,455
1961-1970| 27,252 22,630| 49,882
1971-1980| 42,737 23,510| 66,247
1981-1985| 17,650 9,433| 27,083
1986-1990 | 21,477 7,579| 29,056
1991-1995| 17,975 6,041| 24,016
1996-2001 | 18,315 3,746| 22,061

+ +
Total | 205,683 106,830 | 312,513
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Is there any relationship between owning and rgnom the one hand, and eras of
construction of Canada’s housing stock? We carfdeshis association if we ask for a
chi-square statistic. Issue the command

tabulate builth tenurh, chi2

Period of | Tenure

construction | Owned (wi Rented (f| Total

+ +
1920 or before | 14,528 6,406 | 20,934

1921-1945| 14,586  9,193| 23,779
1946-1960 | 31,163 18,292 | 49,455
1961-1970 | 27,252 22,630 | 49,882
1971-1980 | 42,737 23,510| 66,247
1981-1985| 17,650 9,433| 27,083
1986-1990 | 21,477 7,579| 29,056
1991-1995| 17,975 6,041| 24,016
1996-2001 | 18,315 3,746| 22,061

+ +
Total | 205,683 106,830 | 312,513

Pearson chi2(8) = 8.0e+03 Pr =0.000

Notice that the¢>value is huge -- so large that STATA expressas scientific notation
(8.0 times ten raised to the power of 3, or abg@®®). The corresponding probability of
obtaining a figure this large solely from randonate fluctuations is extremely low --
rounded off to 0.000.

They?test is extremely versatile, and it is widely udeat, it is also affected by sample
size.

Think carefully about that last word, thouglsarmple. Our discussion today focused on
simple descriptive statistics -- numerical sumngaéa set of numbers, without any
inference to the broader “population” that thosemhars purport to represent. But of
course these inferences are crucial, and so weneeltl to move from the realm of
descriptive statistics to inferential techniquést’s begin by considering the effect of
sampling on our analysis of Canadian householdste Ne grand total in the output
above -- 312,513. This is the number of househwlis were sampled and interviewed
to obtain responses to the many questions on theuSejuestionnaire. Statistics Canada
also provides information allowing us to figure dwtw many households in the
population are represented by each sampled houkelssue the command

tabulate builth tenurh [fweight=weighth]

Period of | Tenure

construction | Owned (wi Rented (f| Total
+

+
1920 or before | 537,536 237,022 | 774,558

1921-1945| 539,682
1946-1960 | 1,153,031
1961-1970 | 1,008,324
1971-1980 | 1,581,269
1981-1985 | 653,050
1986-1990 | 794,649
1991-1995| 665,075
1996-2001 | 677,655

340,141 | 879,823
676,804 | 1,829,835
837,310 | 1,845,634
869,870 | 2,451,139
349,021 (1,002,071
280,423 | 1,075,072
223,517 | 888,592
138,602 | 816,257
+

+
Total | 7,610,271 3,952,710 |11,562,981

Now that’s more like it. The PUMF sample -- 312udkand sampled households --
corresponds to a total population of about 11.%ionilhouseholds. The “fweight” option
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asks STATA to tabulate the variables of interesgijhting” each sampled record
according to the value of “weighth” -- which is thember assigned by Statistics Canada
to each household, representing the number of ptpalhouseholds represented by each
sample observation. For the largest social surtletsprovide large samples chosen
according to strict rules of random selection,wleaght value will typically be the same

for each observation (here it is 37 for all houdg$lo Smaller surveys, with fewer
sampled observations, are much more likely to “wis@enple” some kinds of
phenomenon, and to “over-sample” others; those ddsign these smaller surveys, then,
must assign differential weights to various obseova to compensate for this sampling
variability.

One final note of caution. Issue the command

tabulate builth tenurh [fweight=weighth], chi2

Period of | Tenure
construction | Owned (wi Rented (f| Total

+ +
1920 or before | 537,536 237,022 | 774,558

1921-1945| 539,682
1946-1960 | 1,153,031
1961-1970 | 1,008,324
1971-1980 | 1,581,269
1981-1985| 653,050
1986-1990 | 794,649
1991-1995| 665,075
1996-2001 | 677,655
+

340,141 | 879,823
676,804 | 1,829,835
837,310 | 1,845,634
869,870 | 2,451,139
349,021 1,002,071
280,423 1,075,072
223,517 | 888,592
138,602 | 816,257

+
Total | 7,610,271 3,952,710 |11,562,981
Pearson chi2(8) = 2.9e+05 Pr =0.000

Now compare theg?value above -- 2.9 x £6- to what we obtained with exactly the
same variables using the unweighted observatiatisreaThe proportions in various
parts of the table are exactly the same; we’ve lsimmuiltiplied everything by the
household weight (37), inflating thé statistic, and greatly increasing the likelihoodtth
we will detect strong associations even when thay not really exist. This is why it's
so important to think through timeaning of statistical tests and procedures before you
go anywhere near the computer. As computer proaespeeds accelerate, it’'s possible
to do more and more stuff, faster and faster. @lss means it's possible to make
massive, stupid mistakes faster than ever befArel thus meaningless statistics may
have increased by much more than one point fivegmeithis month over last month!
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