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Figure 1. Hypothesis Copernicana.Ditaeva (2005).Hypothesis Copernicana, Scanned from Dagfinn
Dghl Dybvig & Magne Dybvig (2003). Det tenkende masiket. Oslo: Tapir akademisk for|gg 138.
Released into the public domain with copyright expiia Wikimedia Commons.

“...a fundamental use of hypothesis testing isreavdssome inference about
a larger body of unobserved data (thepulatiorl) from a sampleof



observations. ... If it were not possible to draferences about the
population, any analysis would have very limiteglagation and use®”

“Statistics is the science of random processesstdmadard alternative
theory suggested by the phrase ‘null hypothesishas the basic form:
‘there is nothing going on here but the generadibrandom motions in
what the investigator thought was a causal spa8ecause there is a great
deal of random motion in social life, and becalnszé is a great deal of
random noise in social science techniques of obsery, every social
science finding has to show that it is not likedybie simply noise.

Because that alternative theory is one of the fesoicial science that is
well formulated mathematically, it is in generag thardest for ordinary
social scientists to learr.”

In the most general terms, a ‘hypothesis’ is aat#stproposition derived from theory,
logic, or existing knowledge; if tested with propegorous methods, the proposition will
provide information that adds useful knowledge aodtributes to theory. A hypothesis
is not exactly the same as a hunch, an argumeat) assertion. The hunch that comes
from intuition is a valuable element of creativibyt it must be clearly connected to
existing knowledge -- and translated into a testg@ibbposition -- before it can be
considered a hypothesis. Assertions and arguraeatsbiquitous, but they rarely
involve propositions that can be clearly testedhwagitimate methods or credible
evidence.

‘Hypothesis testing’ refers to two distinct apprbes in social research. One approach is
usually understood in a broad, qualitative sensglevthe other is usually described in
narrow, quantitative terms.

Rhetorical Hypotheses

First, a hypothesis refers tatzetorical approach: a technique of persuasion that
involves an attempt to gain credibility by estatig) common ground with a reader or
listener. The word hypothesis comes from the Ghggothesiswhich in turn came

from the Greekypotithenai “to place under,” which came frohypo(‘under’) +
tithenai(to put under). To advance a hypothesis is tdgwuard a postulate, an
assumption, or a supposition. In many areas afladly research and policy discussion,
participants quickly learn that they agree on masyects of the issue at hand -- and
indeed, there may be a consensus that is so bnatid approaches what John Kenneth
Galbraith famously called the “conventional wisddom.

! A. Stewart Fotheringham (2008). “Analysing NuroatiSpatial Data.” In Robin Flowerdew and David
Martin, eds.Methods in Human Geographyarlow, England: Pearson Prentice Hall, 191;20®te

from p. 196.

2 Arthur L. Stinchcombe (2005)The Logic of Social ResearciChicago: University of Chicago Press, p.
291.



But the points of disagreement are crucial, andowadisputes can easily overshadow
points of agreement. In order to promote a heafphyductive discussion, participants
will often seek to formulate propositions that duias far as possible, on points of
agreement -- extending the implications to raisestjans where there is disagreement, in
ways that will help to adjudicate amongst altenedi Proposing a hypothesis, then, is a
way of identifying common ground in order to higjlt an area of dispute in a

productive way -- such that participants in a delzan either reach a consensus, or learn
useful things from their disagreements. Conseisstee, but productive disagreement
can be quite healthy.

Both consensus and healthy disagreement, howdwatysaarequire at least three
preconditions.First, the rhetorical hypothesis must be presentedearagic and
language of the critic or the opponent: to eaenttbst of the audience you wish to
engage, you may have to speak in their languagri néed to appeal to things they find
convincing. You need to find common grourtSecond the rhetorical hypothesis must
strike a tone of fairness and impartiality. Agdhms requires a careful consideration of
the sensitivities of the audience. In some cabeshest move is an attempt to achieve
rhetorical neutrality -- presenting a propositiarthe most neutral terms possible, with a
minimum of adjectives or any other words that sigraaticular interpretations. In other
cases, the best approach is to present contrastergretations -- as clearly and as fairly
as possible, with no caricatures or exaggeratetidatpns. A rhetorical hypothesis is
not an infallible guide to ‘perfect’ knowledge; hbtis a legitimate attempt to build
common ground in the search for better knowledgeguments and interpretations are
usually least convincing when they are introduceddarly -- before a foundation is
built. The stronger the foundations of your hym@stl, the more your audience will feel
compelled to follow the logic of your arguments amgrpretations.Third , the
hypothesis must be clearly testable. You do neé¢ ha specify all the detailed methods
the first time you propose a hypothesis (indeeid, dommon to have ‘hypotheses’ and
‘methods’ appear in different sections); but themeuld be sufficient information in the
presentation of the hypothesis to make it clearttf@proposition is testable, and that
there is a reasonable body of evidence on whidfase conclusions and inferences. An
un-testable hypothesis is pretty much the sama assertion or ideological statement;
assertions and ideological manifestos certainlyetlt@eir place, but for many purposes,
for certain audiences, the diplomatic, fair, argtdble hypothesis is absolutely crucial.

Statistical Hypotheses

The second meaning of hypothesis is more narroggisp, and quantitativea testable
proposition based on the characteristics of a s&nwhich is used to draw an inference
about a broader population according to the mathecad principles of probability.
Peter Rogerson offers the example of a survey wminaating behaviors: we identify a
simple random sample of fifty workers in a citydame ask each of them how far they
travel to their regular workplace The mean of their responses works out to 10.0 km,
with a standard deviation of 9.0 km which we wotyldically denote in shorthand as

3 Peter A. Rogerson (2006%tatistical Methods for Geographysecond Edition. Thousand Oaks, CA:
Sage Publications, p. 93ff.



X =10.0,5=9.0. How much confidence can we place in thisokel sample mearX ,
as an estimate of the true, unobserved populateamp? We know that if we were to
choose a different sample -- fifty different workechosen randomly -- we would
probably not obtain exactly the same estimate @htiean. But if we were to do this
procedure repeatedly, drawing samples over andanan from the population, and
calculating the meaiX for each sample, probability theory gives us tivaeable pieces
of information.

1. The frequency distribution of the sample meXnsill resemble a normal
distribution,even if the underlying population does not confarrthe perfect normal
bell-curve Not all phenomena conform to the normal distidoy but the distribution of
pure, random sampling errdoesconform to normality. This has been demonstrated
repeatedly through experimental techniques (faamse, taking many repeated random
samples from a known, easily-observed populatiod,amnalyzing the sample
distributions).

2. With more samples, or with a larger numberldevvations in each sample, the
sampling distribution becomes a more perfect nodrsttibution, with less variance in
the scatter of sample meals above and below the true, unmeasured populati@mme
4. In graphical terms, this means that the samglistgibution begins to look ‘tighter,’
with less ‘spread’ (Figure 1).
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Figure 1. Comparison of Sampling Distributions wih Different Sample Sizes.
Source: Sigbert (2011). Distribution of Mean Estimatdteproduced under
Creative Commons Attribution-Share Alike 3.0 Unpalticense, via Wikimedia
Commons.

More formally, thevarianceof the various sample estimates of the mean is
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which means that if the population has a largeavee o ?, then we should expect a
correspondingly high variability in the distributi@f the sample means; conversely, with
more samples or with more observations in each Earthe variability in these sample
means decreases. If we take the square root oftience of the sample estimates, we
obtainthe standard error of the sample means



Whenn approaches infinity, the variance of the sampdisgribution approaches zero,
and so does the standard error of the sample meédribat point the sample mean

X becomes a perfect estimate of the population naearhis is intuitively logical: if we
had the resources to do more than a simple surviEjyonvorkers -- if we could do a
complete enumeration of all workers in a city wishy, one million workers -- then our
‘sample’ mean would be exactly the same as theujadipn’ mean.

3. When the sample size is sufficiently large,standard deviation of the observations
in asamplecan be used to make statements about the lik&he vd thepopulation

mean. The sample means will cluster around the truaufaion mean, following a

perfect normal distribution. If everything is egpsed in standardized units -- in terms of
z-scores, standard deviations above and below #a i then this means we can use the
standard normal curve to estimate the likelihood of observing variouspée

outcomes. In the standard normal curve, a normgilalition is transformed to z-scores,
so that the mean is zero, the standard deviatibpasd the total ‘area under the curve’
traced out by the histogram is also 1. In thedsieshnormal curve, only a very small
proportion of the values are below the curve ihaitof the ‘tails.” Figure 2 shows this in
the form of a histogram, while Figure 3 shows #gsa table of numbers corresponding to
the area under the curve at various z-scores togheof the mean. Notice the row for
z=1.9, and then look over several columns untif$keond decimal’ is 0.06: the table
indicates that 0.475 of the curve is included fiien mean up to 1.96 standard deviations
(z-scores) above the mean. The normal curve isrgtnical, and so we know that the
area under the curve up to the mean is 0.500hesStotal area under the curve all the
way up to a z-score of +1.96 is 0.500+0.475=0.91%is is 0.025 shy of 1.000. This
means that only 2.5 percent of the entire distigouis to be found under the curve in the
upper tail -- above a z-score of 1.96; since theecis perfectly symmetrical, another 2.5
percent of the entire distribution is to be foumdier the curve in the lower tail -- less
than a z-score of -1.96. In turn, this means ttmatremainder of the entire distribution --
95 percent -- is within the range of -1.96 to +1.96
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Figure 2. The Standard Normal Distribution. Source: Jeremy Kemp (2005).
Standard Normal Distribution with Scales, Adaptexhf Ward et al., Assessment in the
ClassroomReleased into the public domain, via Wikimedia Camm

This means that if our sample is sufficiently lgrge can use the characteristics of the
sample to make statements about the likely locatfdhe population mean. Specifically,
if we have drawn a simple random sample to obtaimrean valué& , we can be sure that
there is only a 2.5 percent chance that this sampt®re than 1.96 standard deviations
above the actual population mean

Since the standard deviation of the sampling distion was defined above as

o
Oy =—=

X \/_
n
this means that if we have a sufficiently large pnsize, we can use the sample
standard deviation (s) in place of the populatiamdard deviationd). For our survey of
workers’ commute distances, then, this means hHaaetis only a 2.5 percent chance that

= s .
our observed sample meatis more than 1'96f above the true population mean;
n

since our sample size is 50 and the sample stamgadtion is 9, we know that there is

only a 2.5 percent chance thétis more than 1.96\/%:2.49 unitsabovethe true mean.

There is another 2.5 percent chance tais more than 2.49 unitselow the true mean.
The confidence interval for our sample mean of i) then is 7.51 km to 12.49 km: we
are 95 percent confident that if we were to dravinéinitely large number of other
random samples of 50 workers from our city, andaioulate the average commute



distance of the workers in each sample, 95 peudeiie means would lie within this
range.
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Figure 3. Cumulative Distribution Function of the Standard Normal Distribution.
Source: National Institute of Standards and Teldgyo(2010). NIST/SEMATECH e-
Handbook of Statistical Methods, Engineering StiagsHandbook Washington, DC:
U.S. Department of Commerce, public domain.

One-Sample Z-Tests

This general approach is widely used to test whethgarticular sample differs from
some hypothesized value. Suppose we wish to camarsurvey of 50 workers’
commutes (mean 10.0 km, standard deviation oft8.@)known regional average of 13.1
km. Are the commutes of our city workers actualtprter than those of workers across
the entire urban region? Or is it possible thatsample mean is just the product of
random sampling variability?

If there is no systematic difference between tharoates of our 50 city workers and
others across the region, then any differencelsemteans will result solely from random
sampling variability. In that case, the differemsgween our observed mean and the true
population mean would follow a standard normalrdbstion. The equations above can
be easily rearranged to give a z-test statistic:

7= X H
S
Jn
For our commuting example, the z-score is
. 100-131
9
V50
S~ 31
9
N 7.071
-31
Z=
1.27¢
z=-2435

This means that if our sampled workers were neidfiit from workers across the entire
region, then our sample average is 2.43 standasidtaens below population mean (the
regional average). Consult the table for the steshdormal curve, and you note that
going 2.43 z-scores away from the mean takes yoostlall the way to half of the entire
area under the curve: 0.49245. This means thatkett of the way to 0.50000 is only
0.00755 (0.50000-0.49245). This applies symmadtyita negative z-scores, so this
means that only 0.00755 of the area under the dsrvelow -2.43 z-scoresVe can



thus conclude that there is less than a 1 percentbhance that our sample of city
commuters is no different from workers across the ®tire region.

In the language of hypothesis testing, our inpiaposition -- that there is no systematic
difference between the sampled workers and thedera@gional population -- is referred
to as thenull hypothesis or Ho. The z-score is ouest statistic And the thresholds that
we look through on the table of the standard nowuale are often referred to as critical
regions, or critical values: z-values that fallove-1.96 or above +1.96 are usually
identified as “significant at P<0.05,” because ofnhg percent of all z-values will lie
outside this range if indeed the null hypothesisus. Z-values falling below -2.58 or
above +2.58 are noted as “significant at P<0.0&¢dose only one percent of all z-values
will lie outside this range if the null hypothegsrue. In our example, we noted the
probability 0.0075 for a z-score of -2.43; thisisne-tailed test of the hypothesis that the
city workers’ commutes are shorter than those akexs throughout the entire region. If
we have no theoretical or logical reason to susgpettone group is higher or lower than
the other, then we would use a more conservatu@tailed test: the likelihood of a z-
score below -2.43 or above +2.43 is (0.00755)*0).0451. This is significant at the 5
percent level, but not at the 1 percent level.

One-Sample t-Tests

At several points in the discussion above, we ndtat“if the sample is sufficiently
large,” we could use the observed standard deviati@ sampled) as an estimate of the
population standard deviatios)( In his classic workSocial StatisticsBlalock notes

that “this was commonly done before the developroémodern statistics. ... As it turns
out, this procedure yields reasonably good resuten n is large...” but “probabilities
obtained in this manner can be quite misleadingnetier n is relatively smalf” This is
intuitive if we recall Figure 1 above, which shothe effect of sample size on the shape
of a sampling distribution: sampling distributicagproach perfect normality only with
large samples; smaller samples thus provide mwsshridiable information to allow us to
infer the likely location of a true, unobserved me&ampling distributions quickly
begin to resemble normal distributions even withyamall n, but z-tests cannot be
reliably used unless the sample size is at least@en sample sizes dip below 30, the
normal distribution at the heart of sampling thebegins to show much greater
variability -- the ‘tails’ become fatter, with lagg proportions of deviations farther out
from the true, unobserved mean. Inthe 1930sieatsst by the name of W.C. Gossett
wrote an anonymous article identifying the problemith the use of the sample standard
deviation in small-sample tests, and demonstragdtanctive sampling distribution that
he called the “t” distribution. Gossett publisHgd anonymous article under the name,
“Student,” and ever since, the test statistic l@entknown as the “Student’s t
distribution.”

The t statistic is calculated almost exactly themsas a z-score:

“Blalock, Social Statisticsp. 145.
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but the reference points on the table for the argker the curve on the t distribution are
different. The shape of the curve varies signifibawith sample size, indicated by the
“degrees of freedom,” which is calculated as thea size minus 1. Consider if our
survey of commuters had involved a sample sizenbf 20, rather than 50. In that case,
how confident could we be that our sample mear0d km was different from the
regional figure of 13.1?

t

-31
9
JaaTs
-3

201
t=-154

t =

t

With a sample size of 20, our degrees of freeda 8y and the critical threshold for a
confidence interval of 95 percent (2.5 percentaatetail) would be between -2.093 and
+2.093. Since our t statistic lies within thisganwe cannot reject the null hypothesis
with 95 percent confidence. We have insufficierbimation with a sample size of 20 to
back up the claim that our city commuters havetgh@ommutes than others in the
broader region.

With larger sample sizes, the t- and z-statistexsoime perfect substitutes for one
another.

Hypothesis testing is by no means infallible. A& cent confidence interval will
support the wrong conclusion one time out of twefitae (percent). Whether this margin
of sampling error -- typically referred to as alpbax=0.05 -- is acceptable is a
judgment to be made on the basis of logic, theamy, policy. Alpha is also described as
a Type | error -- the probability of falsely rejexg the null hypothesis. In our
commuting example, with the larger sample of 50 woskwe found that the chance of
observing a z-value as large as 2.43 above or hblewue mean was 0.015; even so,
with «=0.015, this means that fifteen times out of a famal, a random sample will yield
a z-score beyond this rangen when there is no difference in the commutesrikevs

in the city compared to the entire regio@n the other hand, if there really is a
systematic difference, and if we set alpha too ldwntthere is a greater chance that we
will fail to reject the null hypothesis when we shibbave; this is known as Type Il error.
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One-Sample Tests for Proportions

Up to this point, our examples have focused on cakese we wish to evaluate the mean
of a variable measured on an interval/ratio scAldew adjustments are necessary if we
wish to test hypotheses regarding proportions. p8s@ in our sample of 50 city
commuters, we ask each worker whether they work ildlentown central business
district; ten (20 percent) say yes, while forty (@¥cent) say no. If the true proportion of
workers throughout the entire region who work downtasvi5.5 percent, do we have
any evidence that our sample of workers who livdnendity are more likely to work
downtown?

For proportions, the observed proportion in our [@anp, can be understood as a random
sample from a distribution that (if n is sufficinlarge) approaches normality; the mean
of this sampling distribution is the true, unobsehproportion, which we’ll calby.

The standard deviation of the sampling distributiotihe standard error of the mean --

is calculated with a formula that’s a bit differdram the one used for interval/ratio
measures:

Opy = ,00(1_ po)/n

This allows us to calculate a z-statistic to tegtiast the standard normal curve:
P— 0,
v ,00(1_ po)/n

if we do not know the true population proportjog) we can simply use the hypothesized
proportion. For our example, the z-statistic is
020-0.155

= ,/0.1550.845) /50
0045
~ ,/0.0026195
0.045

Z=——
0.05118:
z=0.879

Z=

Consulting the reference table for the standardhabcurve, we find that the probability
of obtaining a z-statistic larger than 0.88 undher tull hypothesis (i.e., when ps} is
.18943 (subtract the number you find in the tald2057, from .50000). There is another
.18943 probability ‘in the other tail,” so the clearthat we will obtain a z value more
extreme than 0.88 is 0.37886. This figure is é&agér tharm=0.05, and so we cannot
reject the null hypothesis. We do not have sudfitievidence to conclude that the
proportion of downtown workers is different for outyaesidents (20 percent) compared
with workers throughout the region (15.5 percent).
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Two-Sample Tests for Differences in Means

Suppose we compare our sample of 50 commuters, athrhean commute of 10.0 km
and standard deviation of 9.0 km, to a survey uglegtical methods in another city; the
other survey (n=50) yields a mean of 8.1 km, wigtamdard deviation of 8.8 km. Are
the mean commute distances significantly different?

To test this kind of hypothesis, we first have tckenassumptions about the ‘spread’ of
the observations in each sample. The calculatidmeot-statistic will be slightly
different, depending on whether we have any reastelteve that the variances of the
two samples should be equal. In general, it isecnoonservative -- meaning that we
minimize Type | error, and we make it more diffictdtreject the null hypothesis -- if we
do not assume that the variances are equal. dricéise the t-statistic is calculated as

Where the 1 and 2 subscripts refer to the diffeodaserved sample values. So for our
comparison of commuters in two different cities, vawdn
100-81

90° 88
50

t =

—+
50 50
19
t=
J162+1.5488
19

~1.78C
t=1067

The most cautious, conservative calculation ofdbgrees of freedom for the two-sample
t-test depends on the smallest sample size -the minimum of (n1-1) and (n2-1); for
our example, both of these terms yield a valueSof 8ome tables of the t distribution do
not provide all possible combinations of degreeseddom, but we can see that for
df=40, there is a 0.10 probability (a ten percdr@nce) of a t value larger than 1.303; for
df=60, there is a 0.10 percent chance of a t akger than 1.296. Our t-value falls far
short of these thresholds, and so we cannot rdjeatull hypothesis: our evidence is
insufficient to conclude that the mean commuteathisés between the two samples are
significantly different.
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1. 3.078 6.314 12

2. 1.886 2.920 4.

3. 1.638 2.353 3.

4. 1.533 2.132 2.

5. 1.476 2.015 2.

6. 1.440 1.943 2.

7. 1.415 1.895 2.

8. 1.397 1.860 2.

9. 1.383 1.833 2.
10. 1.372 1.812 2.
11. 1.363 1.796 2.
12. 1.356 1.782 2.
13. 1.350 1.771 2.
14. 1.345 1.761 2.
15. 1.341 1.753 2.
16. 1.337 1.746 2.
17. 1.333 1.740 2.
18. 1.330 1.734 2.
19. 1.328 1.729 2.
20. 1.325 1.725 2.
21. 1.323 1.721 2.
22. 1.321 1.717 2.
23. 1.319 1.714 2.
24. 1.318 1.711 2.
25. 1.316 1.708 2.
26. 1.315 1.706 2.
27. 1.314 1.703 2.
28. 1.313 1.701 2.
29. 1.311 1.699 2.
30. 1.310 1.697 2.
40. 1.303 1.684 2.
60. 1.296 1.671 2.
100. 1.290 1.660 1
© 1.282 1.645 1

2 A1

critica

0

NNPMNOMNONNNONNNORNNMNNNNNONNODNNOW OSSR

NESENIN

1 2 3 4 5
val ue (one-tailed)
0.01 0.005 0.001
821 63.657 318.313
965 9.925 22.327
541 5.841 10.215
747  4.604 7.173
365 4.032 5.893
143 3.707 5.208
998 3.499 4.782
896 3.355 4.499
821 3.250 4.296
764 3.169 4.143
718 3.106 4.024
681 3.055 3.929
650 3.012 3.852
624 2.977 3.787
602 2.947 3.733
583 2.921 3.686
567 2.898 3.646
552 2.878 3.610
539 2.861 3.579
528 2.845 3.552
518 2.831 3.527
508 2.819 3.505
500 2.807 3.485
492 2.797 3.467
485 2.787 3.450
479  2.779 3.435
473 2.771  3.421
467 2.763  3.408
462 2.756 3.396
457 2.750 3.385
423  2.704  3.307
390 2.660 3.232
364 2.626 3.174
326 2.576 3.090

Figure 4. Distribution of Student’s t. Source: National Institute of Standards and
Technology (2010) NIST/SEMATECH e-Handbook of Statistical Methodsgjifgering
Statistics HandbookWashington, DC: U.S. Department of Commerce, ipuldmain.
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