Validation of modeled anthropogenic heat fluxes using long-term energy-balance measurements

Andreas Christen(1), Mike van der Laan(1,2), Ben Crawford(1), Ron Kellett(2)

(1) Department of Geography, University of British Columbia, Vancouver, BC, Canada
(2) School of Architecture and Landscape Architecture, University of British Columbia, Vancouver, BC, Canada
Anthropogenic heat flux

• Anthropogenic heat is sensible and latent heat released by human activities. It can be a substantial term in the surface energy balance of an urban ecosystem.

• The anthropogenic heat flux Q_F (in W m$^{-2}$) is hence a relevant term to be modelled or prescribed in atmospheric models to properly predict temperatures, heat stress, dispersion of air pollutants etc.

• Many studies in various cities have quantified Q_F and neighbourhoods, typically using either bottom-up modelling or top-down consumption statistics.
Urban energy balance equation

\[Q^* + Q_F + Q_H + Q_E + \Delta Q_S + \Delta Q_P = 0 \]

Transportation

\[Q_F = Q_{FV} + Q_{FB} + Q_{FH} \]

Modeled by:
- **bottom-up** transportation models
- **top-down** power consumption

Industry and buildings

Modelled by building energy models

Human metabolism

Modelled using population data

Terms:
- net all-wave radiation
- anthropogenic heat flux
- sensible heat flux
- latent heat flux
- storage heat flux
- photosynthesis and respiration energy flux
A GIS-based bottom-up approach

SUBMODELS
- **Buildings**
 - LIDAR-informed building energy models for a small set of typologies quantify heat emissions in a bottom-up approach.
- **Human metabolism**
 - Calculated based on population downscaling (included in building energy models)
- **Transport**
 - Top-down modelling of traffic emissions based on splitting-up traffic counts and trip-diaries.

MODEL OUTPUTS
- **Q_{FB}**
 - Map of building emissions
- **Q_{FH}**
 - Map of metabolism emissions
- **Q_{FV}**
 - Map of traffic emissions
- **Q_{F}**
 - Summation of Components
 - Map of all emissions
 - Flux tower data
 - Independent, direct measurement of full energy balance (3+ years)

MODEL COMPARISON
Map of modelled building emissions Q_{FB}

Bottom-up modelling using 16 building archetypes in a building energy model.
Map of modelled transportation emissions Q_{FV}

- Modelling based on traffic counts and trip diary data.
- Separately accounting for latent and sensible heat emissions.

Knight / 49th Ave. seen from flux tower 78 W m$^{-2}$
Map of modelled human metabolism emissions Q_{FH}

Estimation based on downscaled night-time population density (census)

50 x 50 m raster of population density, land-use and LiDAR volume
Combined raster Q_F (Total)

Entire study area

Average: 12.8 W m$^{-2}$
Maximum: 86.6 W m$^{-2}$
Modelled anthropogenic heat flux profile

- **12.8 W m$^{-2}$**
 - **4.3** sensible
 - **0.4** latent
 - **0.3** latent
 - **6.9** sensible

- **4.7 W m$^{-2}$**
 - **Vehicles**

- **0.4 W m$^{-2}$**
 - **Buildings**

- **0.3 W m$^{-2}$**
 - **Human metabolism**

All values in W m$^{-2}$

Entire study area
Annual variation of modelled Q_F

<table>
<thead>
<tr>
<th>Month</th>
<th>Buildings (W m$^{-2}$)</th>
<th>Transportation (W m$^{-2}$)</th>
<th>Human metabolism (W m$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>19.2</td>
<td>5.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Feb</td>
<td>17.5</td>
<td>6.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Mar</td>
<td>15.6</td>
<td>8.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Apr</td>
<td>13.0</td>
<td>9.3</td>
<td>2.0</td>
</tr>
<tr>
<td>May</td>
<td>10.6</td>
<td>8.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Jun</td>
<td>9.3</td>
<td>8.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Jul</td>
<td>8.5</td>
<td>9.4</td>
<td>2.0</td>
</tr>
<tr>
<td>Aug</td>
<td>8.5</td>
<td>12.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Sep</td>
<td>9.4</td>
<td>16.6</td>
<td>2.0</td>
</tr>
<tr>
<td>Oct</td>
<td>12.5</td>
<td>19.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Nov</td>
<td>16.6</td>
<td>19.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Dec</td>
<td>19.0</td>
<td>19.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Buildings:
- latent
- sensible

Transportation:
- latent
- sensible

Human metabolism:
- latent
- sensible

UBC a place of mind
System to measure energy balance on top of 30 m Vancouver-Sunset Tower
The energy balance residual approach (EBRA)

\[Q^* + Q_H + Q_E + \Delta Q_P + \Delta Q_S + Q_F = 0 \]

Measured by net radiometer
Measured by eddy covariance system
Modelled using photosynthesis and respiration model separately for lawn and trees (small!)
Residual

For longer periods (e.g. full year): \(\Delta Q_S = 0 \) and residual is \(Q_F \)
Challenges of the EBRA

• **Different source areas** (turbulent: varies with wind etc., radiometer: static) - requires ‘homogeneous’ urban surface.

• Smallest systematic **errors will add up** over entire year.

Radiometer intercomparison vs. Environment Canada standards. Statistical gap-filling.

Turbulent fluxes corrected for density effects (WPL) and sensor separation effects. Despiking and statistical gap-filling. Instruments intercompared over ideal terrain.
Energy balance measurements

Measured average 2008-2011

- QP
- QE
- QH
- Q^*
- Residual

MJ m^{-2} month^{-1}

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Gain for surface
Loss for surface
Monthly comparison

Modelled Q_F ($W \, m^{-2}$)

Residual term ($W \, m^{-2}$)

Urban fabric cools

Urban fabric warms

-5 0 5 10 15 20 25 30

-5 0 5 10 15 20 25 30

May Jun-Sep Apr Mar Feb Nov Dec
Annual energy balance

On annual scale no storage is possible

-90
-60
-30
0
30
60
90

May 08 - Apr 09
May 09 - Apr 10
May 10 - Apr 11

QP
QE
QH
Q*
Residual

W m²

must be Q_f
Comparison of annual totals

<table>
<thead>
<tr>
<th></th>
<th>Measured</th>
<th>Modelled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average year</td>
</tr>
<tr>
<td>May 2008-</td>
<td>10.2</td>
<td>12.8</td>
</tr>
<tr>
<td>April 2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 2009-</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>April 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 2010-</td>
<td>12.4</td>
<td></td>
</tr>
<tr>
<td>April 2011</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(Q_F\) (W m\(^{-2}\))
Summary

• In our study area, the annual anthropogenic heat flux Q_F modelled by a detailed bottom-up approach agrees surprisingly well with the annual value determined using the EBRA with a fully calibrated EB system.

• The fact that the EBRA results in similar Q_F values in three consecutive years suggests that the EBRA is a reliable method to validate Q_F models.

• On monthly scales, however, storage effects inhibit a direct determination of Q_F using the EBRA.