Evaluating conditional sampling strategies for trace-gas flux measurements in urban environments

A. Christen (1,2), C. S. B. Grimmond (1,3), R. Moriwaki (2), D. Scherer (1) and R. Vogt (1)

(1) Berlin University of Technology (TU Berlin), Department of Climatology, Berlin, Germany, *eMail: andreas.christen@tu-berlin.de
(2) King’s College London, Department of Geography, Environmental Monitoring and Modelling Group, London, UK.
(3) Tokyo Institute of Technology, Department of Civil Engineering, Tokyo, Japan.
(4) University of Basel, Department of Environmental Sciences, Meteorology, Climatology and Remote Sensing, Basel, Switzerland.

To test these conditional sampling techniques in urban turbulence, they were simulated with 80 hourly runs from four existing urban CO2-data-sets (Baltimore, Tokyo, Basel and Berlin). Here CO2-exchange is used as a surrogate for any trace-gas. It was directly measured using high-frequency analyzers at all sites. The data-sets also include temperature, H2O and wind fluctuations at 8 to 20 Hz.

Relaxed Eddy Accumulation (REA)

An updraft and a downdraft reservoir are conditionally filled with air based on the instantaneous value of vertical wind w. The reservoirs are later probed by slow gas analyzers and the measured trace-gas concentration difference between the two reservoirs $(c^+ - c^-)$ is related to the flux wD, using the coefficient β and α [1]:

$$wD = \sigma_w (c^+ - c^-)$$

β-coefficient: β has received much attention in literature [2-4]. For the surface layer, values around 0.56 are reported. The strongly non-Gaussian turbulence driving the exchange above rough surfaces and the non-uniformity of sources in urban areas call for a re-evaluation of its value in urban environments. However, the current urban datasets in general do not suggest a strong departure. Regression slopes at all sites range between 0.50 and 0.60. The dense build-up sites (Baltimore, Berlin) are even closer to the Gaussian prediction [5], but show larger scatter.

To a great extent the conditional sampling techniques in urban turbulence, they were simulated with 80 hourly runs from four existing urban CO2-data-sets (Baltimore, Tokyo, Basel and Berlin). Here CO2-exchange is used as a surrogate for any trace-gas. It was directly measured using high-frequency analyzers at all sites. The data-sets also include temperature, H2O and wind fluctuations at 8 to 20 Hz.

Errors related to deadband width: The current simulation suggests that deadbands width of $\pm \delta$ do not reduce the reliability of the parameterized flux. Higher δ even lowers the overall RFS in some cases by removing the disorganized around the zero-crossing below. However, above $\delta=1$ statistical significance becomes increasingly lower.

Valves performance: From a practical point of view, it is best to reduce valve switching rates but also to increase the average sampling period. Obviously, a higher δ lowers the valve switching rate but it also lowers the average sampling period. In any instrumental realization there will always be a trade-off between a high concentration difference, a good statistical significance and a low valve switching rate.

Disjunct Eddy Covariance (DEC)

Instead of a continuous measurement of w and trace-gas concentration c, a drastically reduced subset is used to calculate the trace-gas flux. In fixed sampling intervals, air is sucked very fast into reservoirs (<0.1 sec) and analyzed during a longer sampling interval. The flux is reconstructed with the small number of measured c and simultaneously measured w [6]. DEC is a direct method. Above urban surfaces, fluxes are typically associated with large coherent structures occupying only small time fractions. Therefore, also DEC has to be carefully simulated with urban CO2-data before measurement systems will be deployed in cities.

Statistical error of the DEC: With increasing sampling interval, the statistical significance of the DEC is lowered. The RFS was calculated for each run and a variety of equally spaced sampling intervals by simulating a large number of realizations using different offsets relative to the first measurement.

Correlation coefficient: It is no surprise that not only narrow sampling intervals (resulting in more sampling points), but also a high correlation coefficient r_{xy} raises the quality of the DEC flux estimation.

Acknowledgements

We acknowledge the preparation of raw data and operation of the sites by Ben Crawford (Indiana University), John Horn (USDAS FS) and Hartmut Küster (TU Berlin). Funding for the Baltimore site was provided by NSF and USDA FS.

References

Selected urban flux monitoring towers

<table>
<thead>
<tr>
<th>View from tower</th>
<th>Site</th>
<th>Type of tower</th>
<th>Height</th>
<th>Instrumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cork Hill</td>
<td>Baltimore</td>
<td>40 m</td>
<td>Sonic (Young USA)</td>
<td>Closed Path (LY000)</td>
</tr>
<tr>
<td></td>
<td>Vegated suburban</td>
<td>40 m</td>
<td>Sonic (Young USA)</td>
<td>Closed Path (LY000)</td>
</tr>
<tr>
<td>Tokyo</td>
<td>29 m</td>
<td>Open Path (LY0750)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kugahara</td>
<td>29 m</td>
<td>Open Path (LY0750)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dense urban</td>
<td>29 m</td>
<td>Open Path (LY0750)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klingenbergstrasse</td>
<td>38 m</td>
<td>Open Path (LY0750)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dense urban</td>
<td>38 m</td>
<td>Open Path (LY0750)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berlin</td>
<td>Stiegler Kreisel</td>
<td>119 m</td>
<td>Sonic (metek USA)</td>
<td>Open Path (LY0750)</td>
</tr>
<tr>
<td>Regional / urban</td>
<td>Berlin</td>
<td>119 m</td>
<td>Sonic (metek USA)</td>
<td>Open Path (LY0750)</td>
</tr>
</tbody>
</table>

The REA-Deadband

Practically, a deadband of width $\pm \delta$ is excluded from analysis in order to reduce valve switching around the zero-crossing of w and c. To increase the concentration differences in the two reservoirs.

β-coefficient as a function of deadband width: Dissimilarities between the fluxes of CO2, sensible heat and H2O are reflected by different β-coefficients. Runs with a wide deadband show significant departures between the different scalars and sites. The theoretical β-coefficient as a function of δ for a Gaussian distribution is drawn in black.

Correlation coefficient: It is no surprise that not only narrow sampling intervals (resulting in more sampling points), but also a high correlation coefficient r_{xy} raises the quality of the DEC flux estimation.

Acknowledgements

We acknowledge the preparation of raw data and operation of the sites by Ben Crawford (Indiana University), John Horn (USDAS FS) and Hartmut Küster (TU Berlin). Funding for the Baltimore site was provided by NSF and USDA FS.

References